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O Education @ POLab
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M.S., IEEM, National Tsing Hua University, Taiwan
B.S. & B.B.A., Mathematical Science and MIS, National Chengchi University, Taiwan

0 Experience

Prof., Dept of Information Management, National Taiwan University (2020-now)
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Agenda )POLab

0 Five-Phase Analytics
0 From Predictive to Prescriptive Analytics
0 From Prescriptive to Optimization-Guided Learning

[0 Takeaway
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Five-Phase Analytics )POLab
O FIVE-Phase Analytics: A way from POINT to PLANE

— - - - . - . S . S . e S e . .

What Why " When How/Who > \.  Where
/ How can we optimize
decision? Who takes |t’?

When/What will Where should build

happen next? automatic routines?
|

Why did it happen?
What happened?

I
Descriptive Diagnostic Predictive Prescriptive [ Automating
|
Analytics Analytics Analytics Analytics | Analytics
I
[
I
U N ! S (o Il N
Data Collection Root Cause \ Variability Risk Assessment | Real-time Monitoring
Visualization Interpretation * Information Diversity  Resource Leveraging ’ pomain Adaptation
Niche Identification Causality ~ Trend Patten  Decision Tradeoff o’ Financial Dashboard
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2} ?éx‘ il T i~

Lee, C.-Y., and Chien, C.-F,, 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189-1207.
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One Example... )POLab

0 We typically build Al models for prediction or scenario analysis
® CNN, LSTM, SVM, Random Forest, Boosting, PLS, ...
® Then...Which model is better? What's the next step after prediction?

0 Prediction is Risky!
® How about the potential risk (i.e. loss) after decision-making?

0 Example
® Model A with accuracy 95%, however, inaccurate prediction could lead to big loss.
® Model B with accuracy 90%, however, inaccurate prediction could lead to small loss.
® Which model do you prefer?

O Predictive Thinking - Prescriptive Decision

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 5



Prescriptive Analytics and Risk Assessment @)POLab

[0 Confusion Matrix for Binary Classification
® Two risks: false alarm (type |) and miss rate (type Il) = Prescriptive
® Trade-off between two misclassified errors - cost sensitive

Predict

\Vi[eYo I=] WA

Accuracy AUC
Model A 71.9% 70.2%

Model B 78.1% 78.9%

AUC: Area under the Curve of ROC

Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189-1207.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. ¢




@)POLab

Decisions take into account the RISKS associated
with the realization of uncertain events.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 7



Raw_l\/laterlal Price Prediction and Procurement ... e exiraction % POLab
O Price Forecast (Predictive Analytics)

Variable rc. c.c. Variable rc c.c. Variable rc. c.c Variable r.c. c.c
T xo1 | 179501 | 05195 | Y| x03 | 22507 | o851 Y Y| x22 | 56785 | 07958
* X02 18.3465 | 0.5229 * X04 0.8613 0.1990 X10 0.9936 0.9997 X23 0.7643 0.9258
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1
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\
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g ! Transformation Butadiene(BD) X18 | 08802 | 09512 X31 | 1.3185 | 0.9753
£ rc.>15
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P e e e ] .
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1
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o
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Lee, C.-Y., Chou, B.-J., and Huang, C.-F. 2021. Data Science and Reinforcement Learning for Price Forecastifitrand Raw Material Procurement

o in Petrochemical Industry. Advanced Engineering Informatics, 51, 101443. ' _
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Raw Material Price Prediction and Procurement @P‘OLab
0 Reinforcement Learning (Prescriptive Analytics)

Human Judgment current policy optimal Policy Reinforcement Learning

[ Inventory =@== Actual Price ==@= Forecast Price

[ Inventory —@— Actual Price

Inventory (tonne) and BD price (US$/tonne)
Inventory (tonne) and BD price (US$/tonne)

LR
Blw|N (=
<

Current policy (s,S) policy Optimal policy

Average inventory (tonne) 3112 1812 3197
st w
Amount purchased (tonne) 25,301 35,430 36,835
Total cost (USS) 44,596,113 42,324,694 39,091,618

Lee, C.-Y., Chou, B.-J., and Huang, C.-F. 2021. Data Science and Reinforcement Learning for Price Forecasting and Raw Material Procurement

o in Petrochemical Industry. Advanced Engineering Informatics, 51, 101443. _ ,
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. g



Prognostics and Health Management (PHM) ¢ reature Engineering @Pf)Lab

O Remaining Useful Life (RUL) (Predictive Analytics) ~ ~ fme bomain. Frequency Domain, Time-
® Motor

® Data Source Foature S ——

Maximum Value f1i = max(X(i))
— . . . . Mean Value fa2i = % Z,N:1 X (4)
o amoituge — VIPration acceleration signal Minimum Value foi = min(X (i)
( 5“] p—y p Standard Value fai = \/% va:1 (X (i) — f1i)2
\‘/1-\: \u<\ \\ < Peak to Peak Value Jsi = f1i — fai
L \ \
N \ Mean Amplitude fei = L,V Z,Nzl | X (4)]
I
\ \\\&h & Root Mean Square Value fri = % Z!V:] X (¢)2
\\‘ A o o Skewness Value Jsi = # Z,v:l X (i)3
Kurtosis Value foi = % Z.Nzl X (i)*
Waveform Indicator Sf10i = %7—’
o - llir
Pulse Indicator f11: = ;T'L
Kurtosis Index Sf12i = %{‘—,L
o Peak Index f13i = %"
deterioration Square Root Amplitude frai = (A—I Z:\:I v/ ‘X(r”)z
Margin Indicato Sfi5i = %‘—
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— . i
Time . d 0 .
. T T T T
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RUL SVR
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23
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O]
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http://www.li-ming.com.tw/ 0 2 50 75 Ordered Index

Lee, C.-Y,, T.-S. Huang, M.-K. Liu, and C.-Y. Lan. 2019. Data Science for Vibration Heteroscedasticity and Predictive Maintenance of Rotary Bearings. Energies., 12 (5), 801.

Jiang, W., Hong, Y., Zhou, B., He, X. and Cheng, C. 2019. “A gan-based anomaly detection approach for imbalanced industrial time series,” IEEE Access, vol. 7, pp. 608-619.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 10
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Prognostics and Health Management (PHM) @Pf)Lab

O Predictive Maintenance (PdM) Scheduling (Prescriptive Analytics)

® The proposed four-stage PM (preventive maintenance) algorithm provides a tradeoff
between machine workload (capacity loss) and condition (PHM indicator; yield loss), and
Integrates non-bottleneck machines in upstream and downstream of the bottleneck.

* Machine defects
« PM records — Bottlene_ck »  Bottleneck . »Non-bottleneck »| Non-bottleneck » Non-bottleneck
« PM pre-scheduling PM Planning PM plan Rescheduling Ner\]N(Jjo? Rescheduling New job PM Planning PM plan
. schedule schedule
Based on PHM indicator * Shutdown PM machine Based on new schedule of bottleneck

* Yield prediction
* Cost of yield loss
» Cost of capacity loss

Based on new job schedule
* Yield prediction

* Cost of yield loss

* Cost of capacity loss

* Reschedule of bottleneck  and queue time limit
* Reschedule of non-bottleneck in
upstream and downstream
* Minimize the over-queue-time jobs

Bottleneck machine PM at 9am

Before PM ® The system considers bottleneck and connects them to upstream and
BEE A B1T PM Al downstream;
° : : o
< aftected b , e e s s Supports machine yield .predlctlon, |
Jobs affected by PM zoz Oct 3, 2022 ® Estimates the costs of yield loss and capacity loss;
B Jobs not affected by PM ® Incorporates queue time limit and maintenance resources (available
labor hour) into the model,
After PM ® Considers the production uncertainty for developing stochastic dynamic
programming;

® And recommends the priority of machine PM.
06:00 12:00 18:00 00:00 06:00
Oct 3, 2022

Oct 2, 2022
Kung, L.-C., and Liao, Z.-Y. (2022)1. "Optimization for a joint predictive maintenance and job scheduling problem with endogenous yield rates"”, IEEE Transactions on Automation Science
and Engineering, 19(3), 1555-1566.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 11



Workflow: From Predictive to Prescriptive Analytics

[0 1st stage: Predictive Analytics
® Estimation
® Prediction or forecast is difficult
— because it's about the FUTURE
® Estimation or imputation is reasonable

— Use known information to estimate
UNKNOWN information

OO0 Example
1st Stage
Input Hidden Output
Layer Layer Layer NN Desired
Output  Output

7@_’ V1 Y1
@
>@—> 5’\ n Yn

H{_/

Loss

Error back propagation

Productivity Optimization Lab, NTU

Zm—mz
i=1

Optimization-Guided Learning

O 2nd stage: Prescriptive Analytics
® Optimization
® Decision-maker’s preference structure
— Multi-objective decision analysis
® Resource allocation optimization
— 8M1l: A(Man) - #(Machine) * ®l(Material) ~ 7575
(Method) * HIE (Measure) - B (Minutes) ~ B+

(Money) - IZi&(Mother nature/environment) * &5
(information)

® Risk assessment & diversification

2nd Stage
min C'x
 vemiwaes H St Ax =D
Error(MSE) T > ~
X r

=0

@)POLab

Chia-Yen Lee, Ph.D. 12



@)POLab

Prediction Is the Process; Decision is the Purpose.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 13



So... @ POLab
1. Error/MSE focus 1. Objective/KPI focus
2. Data-driven g 2. Decision-oriented
3. Causality From. P_redlctlve t_O 3. Resource Allocation
4. Find the change in unchanging env. Prescriptive Analytics 4. Find the unchange in changing env.
-2 %8¢ H % (infor. content) - ¢ 37 #$ (robustness)
Stock _
Price Predictive Proactive Prescriptive POF’FfO!IO _
Forecast Analytics Decision Analytics Optimization

Robustness?

-~

w7

Optimization-Guided Learning

l

P —

Productivity Optimization Lab, NTU

Chia-Yen Lee, Ph.D. 14



Optimization-Guided Learning (OGL)

From Predictive to
Prescriptive Analytics

oradict Proactive > -
';e IICt.Ive & RObUSt rAe‘sc:lE)c.lve
Nalytics Decision Nalytics

ptimization-Guide
Learning

0 Hyperparameter Optimization in Learning Algorithm

® Grid Search, Random Search (eg. tabu search, genetic algorithm)

® Bayesian Optimization; Optimal Computing Budget Allocation (OCBA)
0 Optimization-Guided Learning (OGL)

® Genetic Algorithm embedded with Reinforcement Learning (GAeRL)

® Reinforcement Learning embedded with Robust Optimization (RLeRO)

Productivity Optimization Lab, NTU Optimization-Guided Learning

@)POLab

Chia-Yen Lee, Ph.D. 15



Optimization-Guided Learning (OGL) @ POLab

0 Hyperparameter Optimization in Learning Algorithm

& @
® () & & ® ®
. o & o € ®
5 B @ g C Youl 1
£ & @ @ = E ® £ e e
e E T £
2 g ° 2
) 8 i ] )
g S 3
I I X
® #
@3 & @
Grid Search Random Grid Search

Bayesian Optimization

https://pub.aimind.so/understanding-hyperparameter-optimization-techniques-4a39d0494612
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 16



Optimization-Guided Learning (OGL)
] Bayesian Optimizggion

8 observation

SNy =
acquisition min

acquisition function (u(6))

n=4
L objective function (f(6)) new observation

f(0)

n=>5%
Ny posterior mean (u(6)) posterior uncertainty
2 (u(6) £ 0(0))

—
o P e

Bayesian optimization example: Threee iterations of Bayesian optimization
minimizing a 1D function. The figure shows a Gaussian process (GP)
approximation (solid black line and blue shaded region) of the underlying
objective function (dotted black line). The figure also shows the acquisition
function (green). The acquisition function (GP-LCB, lower confidence bound) is
the difference of the mean and variance of the GP (multiplied by a constant),
which Bayesian optimization minimizes to determine where to sample next.

Score (Model Performance)

clid

P

%

g
=

g
S8 002

0.66

£ D04

2o 066

Ci

Uppe

Prababality

ﬁ_o
59 0.33

@)POLab

ParBayesianOptimization in Action (Round 1)

0.75

0.25

Trees in Forest (K)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pchi.1006606

https://en.wikipedia.org/wiki/Bayesian optimization

Productivity Optimization Lab, NTU Optimization-Guided Learning
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Optimization-Guided Learning (OGL) @Pf)Lab
O Optimal Computing Budget Allocation (OCBA) (Chen and Lee, 2011)

® Given a limited computing power, OCBA finds the best alternative (i.e. parameter
design) by maximizing the probability of correct selection (PCS). OCBA maximizes

PCS, given a limited budget. OCBA Model

Cost Nllzlj-l-jal\),(|K| PCS =1 — Yiexizp Py > i}

\

Approximate Probability of Correct Selection(APCS)

St 2exmi ST, PCS >APCS
R : No more n; =0, Vi €K
= E‘ : computations | et o; be the variance for design i. PCS can be
' : asymptotically maximized when the relationship between
: _ - two non-best design i and j, where i # j # b, in the [th
~ Design iteration. 1+1 ~ -\ 2
Need more computations n " (oi/(fp — [)
for simulation n]l_+1 a o;/(fip — )
Notations: Y
K: a set of designs (alternatives) l+1:0b\]2LEK zib(nlﬂ/gz)
b € K: the best design AW

n;: # of simulation allocated for design i € K # of simulation replications for the best design

u; . the mean of fitness value for design i
T the total computing budget OCBA should be the best Ranking and Selection process (Branke et al., 2007)

Chen, C. H. and Loo H. Lee. Stochastic simulation optimization an optimal computing budget allocation. Singapore Hackensack, NJ: World Scientific, 2011.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 18



@)POLab

Optimization-Guided Learning (OGL)

- Genetic Algorithm embedded with Reinforcement Learning (GAeRL)

Lee, C.-Y., Ho, C.-Y., Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with
reinforcement learning for petrochemical melt-flow-index production scheduling. Applied Soft Computing, 159,
111630.

- Reinforcement Learning embedded with Robust Optimization (RLeRO)

Lee, C.-Y., Huang, Y.-T., and Chen, P.-J., 2024. Robust-optimization-guiding deep reinforcement learning for
chemical material production scheduling. Computers and Chemical Engineering, 187, 108745.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 19



Genetic Algorithm embedded with Reinforcement Learning (GAeRL) @P@qu
[0 Petrochemical Production Scheduling ({6 LM HER2 45 14)

® Objective Functions
— Minimize tardiness (satisfying due date)
» Total Tardiness = };¢; Tj = X ;¢; max{C; — D;, 0}
— Minimize # of conversion, transition time, volume of transition product
> Transition Prodcuts = Y;cr(MFI;,, — MFI,)?
® Constraints
— Type Conversion Constraint
— Specific Group Constraint
— Melt-flow-index (MFI) Slowly-Rise-and-Fall Constraint
— Sequence-Dependent Transition Time Constraint

Low MFI

\ Conver5|on Product

—A—y—gg—ﬁog
T.c—é——A—d'—A-“—

Blomer, F., & Gunther, H.-O. (1998). Scheduling of a multi-product batch process in the chemical industry. Computers in industry, 36(3), 245-259.
Blomer, F., & Gunther, H.-O. (2000). LP-based heuristics for scheduling chemical batch processes. International Journal of Production Research, 38(5), 1029-1051.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 20




Scheduling Methodology @P@Lab

OO0 JSP is among the hardest combinatorial optimization problems.

® NP-hard problem
Local optimum

0 Heuristic Method (Priority Rule) Short running time

® Shortest processing time (SPT), earliest due date (EDD), etc.
® Pros: easy to understand /\
® Cons: poor performance for complicated production line

O Meta-Heuristic Algorithm (Tabu, Simulated Annealing, Genetic Algorithm)
® Approximated-optimization approach
® Pros: provide a good solution efficiently
® Cons: cannot guarantee the global optimum

0 Reinforcement Learning
® Optimal control approach to take actions in a dynamic environment
® Pros: consider decision over time for dynamic flexible job shop scheduling (DFJSS) v
® Cons: convergence issue in a large state space and action space

Global optimum
0 Mathematical Programming Long running time

® Optimization-based approach formulated by mixed integer programming
® Pros: Guarantee global optimum
® Cons: computational burden for large-scale problem (not suitable for frequent rescheduling)

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D.



Genetic Algorithm (GA) @ POLab

Encoding
DNA, genes, & chromosomes Chromosomes represent potential solutions Two-point order crossover mechanism
— v _ Crossover point
Initial population L —
Generate a set of chromosomes
+ Parent 1 A B C D E F G H
> Crossover and mutation
Generate offspring from parents
Nucleus ELLe D Parent 2 H E D A B C F G
Fitness computation @
Evaluate the chromosome guality Offspring1 = E F D A B C G H
{ Chromosome : + n ]
Selection mechanism Offspring2 = H A C D E F B G
: Solution comparison and random selection
Nitrogenous bases
[ Adenine +
G Guanine . Arbitrary multiple-point shift mutation mechanism
M Thymine New population y pie-p
=] Cytosine I_l
Exchange order C&EASD
Position A B C D E F
Chromosome B D C E A F
Best solution New Chromosome E D B C A F

Holland, J. H. (1975). “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 22



How does RL guide GA?

0 Population Similarity

® Population similarity: cluster the population with DBSCAN, and then use the
Spearman rank correlation coefficient to estimate the correlation within the groups
and between the groups.

® Correlation: total - within group = between groups

® Population similarity as the correlation within the groups divided by the number of
the clusters.

® Guide the mutation and crossover to balance exploration and exploitation.

— if chromosomes appear similar, the population might be premature: need exploration and
increase mutation and crossover rates

— if chromosomes appear dissimilar, the population are not converged: need exploitation
and decrease mutation and crossover rates.

] Phase of lterations
® Phase of iteration: the number of iterations that GA did not find the better solutions.

[0 State Space in RL

® Discretize the two states by assigning quartiles to each value (i.e., the state space
consists of the 4x4=16 states).

Productivity Optimization Lab, NTU Optimization-Guided Learning
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Reinforcement Learning Elements @)POLab
O Action

Rate tuning and mechanism design related to crossover and mutation

Rate tuning: “fix”, “increase”, and “decrease” by multiplying the original rate by 1, 1.02, and 0.98.
Combining the crossover and mutation rates to generate 3x3=9 actions.

th 1

Crossover mechanism: “one-point order crossover’, “two-point order crossover’, and “position-
based order crossover”

® Mutation mechanism: “adjacent two-point change mutation”, “arbitrary multiple-point shift
mutation”, and “shift change mutation”.

® Combining the crossover and mutation mechanisms to generate 3x3=9 actions

A
O Reward o

® Two-objective reward: minimization of (1) transition products and (2) % T
total tardiness. E 51. N !

O Hypervolume_ as the _volume surrounded_by the_: solutio_ns anq a s ! !
reference point (REF) (i.e., the poorest solution having the highest limit k= ®---1
of each objective). = > 53 @ -

® Goal: maximize the hypervolume: If the present hypervolume indicator Min Transition Products >

IS better than last time, the reward is with +1: otherwise, If it IS worse
than last time, the reward is with -1.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 24



GA embedded with RL (GAeRL) )POLab

NSGA-I1 with Optimal POIiCy Chromosomesigrigiir;gtential solutions Pseudocode of GAeRL
[ = = = == == == == o= omm mm mm mm mm e e e e e e e e e e e e e e e e e e e e e e e e =
- — - Begin
Define the State, Initial population
Action, and Generate a set of chromosomes Model-based RL

Reward in the
genetic algorithm

While not maximal number of iterations
Repeat NSGA-II with random action
Collect data (state, action, reward)

v

Crossover and mutation
Generate offspring from parents

End

Repeat NSGA-I1 - - Estimate the transition matrix and reward matrix

100 times with Combine parent and offspring MDP (value iteration)

random actions Elitism strategy Obtain optimal policy (adjustment of mechanism or rate of crossover and mutation)

Tune the parameters Select the optimal
by optimal policy mechanism of Decoding and repair
Estimate the (crossover rate and crossover and Generate fgasible solutiFLns M . o
transition matrix mutation rate) mutation * Input: Optimal policy and initial parameters
. - Generate a population from EEH or generate a population randomly
f ) Fitness evaluation While not termination condition
| Non-dominated sorting Generate offspring by crossover and mutation
Transition matrix Optimal policy + Combine offspring and parent population
and (get the optimal Selection mechanism For each chromosome from offspring and parents

Reward matrix policy from Front rank and crowding distance Compute the fitness function

model-based RL) Non-dominated sorting

Select chromosomes based on non-domination front rank and crowding distance
Build new population

| New population

I
I
|
|
|
|
I
|
I
|
|
I
I
I
and reward matrix |
|
|
I
I
|
|
|
|
I
|
I
|
|
I

MDP Calculate the state Compute the state according to new population
including population Choose optimal policy according to the state
similarity and phase of Tune rate or select mechanism of mutation and crossover
iterations End
Decode to the petrochemical production schedule
Optimal policy — T End

[ Best solution

Lee, C.-Y,, Ho, C.-Y,, Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with reinforcement learning for petrochemical melt-flow-index production
scheduling. Applied Soft Computing, 159, 111630.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 25



Empirical Study of Petrochemical Scheduling )POLab

[0 Petrochemical Factory

® |Leading manufacturer & supplier of polypropylene in Taiwan

— Product portfolio consists primarily of SBS, SIS, SEBS, and SEP, including compound materials
for footwear, modified asphalt, waterproofing membranes, adhesives, and plastics modification.

® Data Source: manufacturing execution system (MES)

® Time: First half of 2019

® Data Size

— 38 orders including 199 batches, 4 types of catalyst, 4 types of donors, and 12 precedence
groups.

— Transform the data for proprietary information protection without loss of generality.
® Results

— Reduce transition products in the petrochemical production line by more than 10% through
minimizing the change of the Material Flow Index (MFI).

— |t ensures the fulfillment of customer due dates.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 26



Empirical Study of Petrochemical Scheduling @)POLab

O State Space
® 16 states (combination of 4 levels of similarity and 4 levels in phase due to quantile discretization).
O Action Space

® 9 actions (combination of 3 levels in crossover and 3 levels in mutation) with respect to rate tuning
and mechanism selection, respectively.

O Initial Parameters Settings
® Population size 20, crossover rate 0.8, and mutation rate 0.2.

| Action ID | Crossover ________ Mutation ______

[l | One-point order crossover Adjacent two-point change

| Action ID | Crossover rate Mutation rate

R1 Decrease Decrease Two-point order crossover Adjacent two-point change
Fix Decrease Position-based order : :
Adjacent two-point change
Increase Decrease crossover
Decrease Fix One-point order crossover Arbitrary multiple-point shift
R5 . : : : : : :
Two-point order cr r  Arbitrary multiple-point shif
(baseline) Fix Fix (baseline) wo-point order crossove bitrary multiple-point shift
i Position-based order : : : :
Increase Fix Arbitrary multiple-point shift
Decrease Increase crossover
Fix Increase One-point order crossover Shift change mutation
Increase Increase Two-point order crossover Shift change mutation
Position-based order : :
Shift change mutation
crossover

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 27



Empirical Study of Petrochemical Scheduling

0 Performance Comparison (with 30 replications)

Six Algorithms: (1) Engineering Experience Heuristic (EEH), (2) NSGA-II, (3) NSGA-II with random
action (NSGAwW/RA) for rate tuning of crossover and mutation, (4) NSGA-II with random action
(NSGAwW/RA) for mechanism selection of crossover and mutation, (5) NSGAeRL for rate tuning, (6)

NSGAeRL for mechanism selection. (Note: NSGAW/RA has the same set of actions with NSGAeRL, but with equal
probability of selecting actions rather than the optimal policy.)

@)POLab

R1 R4 R1 R4 M7 M6 M1 M6
R8 R8 R4 R9 M4 M8 M4 M2
R3 R6 R3 R1 M1 M4 M6 M8
R5 R4 R8 R4 M4 M5 M8 M8
Mean NSGAwWRA NSGAwa\ NSGAeRL NSGAeRL
(Standard EEH NSGA-II for Rate for Mechanism . . .
.. . . for Rate Tuning for Mechanism Selection
Deviation) Tuning Selection
Transition 5993 7247 7603 6974 6791 6517
Products (0) (950) (1283) (952) (940) (841)
Total 672 316 292 260 256 234
Tardiness (0) (98) (78) (44) (70) (38)
# of 1 1287 872 1597 1418 1767
Iterations (0) (490) (463) (378) (489) (292)
CPU Time 3 1122 924 1474 1466 1722
(second) (0) (448) (442) (337) (483) (280)

Productivity Optimization Lab, NTU

Optimization-Guided Learning

Chia-Yen Lee, Ph.D. 2g



@)POLab

Optimization-Guided Learning (OGL)

- Genetic Algorithm embedded with Reinforcement Learning (GAeRL)

Lee, C.-Y., Ho, C.-Y,, Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with
reinforcement learning for petrochemical melt-flow-index production scheduling. Applied Soft Computing, 159,
111630.

- Reinforcement Learning embedded with Robust Optimization (RLeRO)

Lee, C.-Y., Huang, Y.-T., and Chen, P.-J., 2024. Robust-optimization-guiding deep reinforcement learning for
chemical material production scheduling. Computers and Chemical Engineering, 187, 108745.
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Reinforcement Learning embedded with Robust Optimization (RLeRO@ POLab

0 Petrochemical Production Scheduling

® Uncertainty

— Demand fluctuation and yield rate

— Polyhedral uncertainty sets encode a budget of uncertainty into cardinality constraints.
® Objective function

—To maX|m|ze the gross profit of the chemical production schedule

S L]
— Max Zza ZpEP ViA*ixy, IZLEI ZpEP CP Sip| 2ier Ci'l ig — Yiel Z]euqtzzzaep CU Zijp

¥ L 4

Sales proflt Inventory cost Stockout cost Transition cost
® Constraints
W State initialization for subproblems B Machine occupancy constraint
Sipy = SL,Vi €I, x;p = X;;,Vi€1,f € FU{R} YierXip = 1L,VYpEP
B Mass balance constraint B Variable domains
Sip = Si(p-1) T AjXip = Dip + 1, Vi€ LLp EP X, €{0,1}, Vi€ I,p € P U {Ry}
B Production transition identification zjp €E{0,1}L,VieL,jELLpEP
Dier Zijp = Xjp, YV ELLpE P Sip = 0,Vi €,p € PU{R}
Yjer Zijp = Xi(p-1), Vi€ Lp EP iy, =0,Vi€el,pEP
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Reinforcement Learning embedded with Robust Optimization (RLeRO@ Pf)qu

0 Action

® Network output discrete probability distribution A
® Action a is sampled from A4, corresponding to x;,,.

OO0 Episode

Product

® Finish a complete scheduling window and rolling to the next.

0 Reward

® The change in objective value after a particular action

0 State encoding

state, = (| Lip |, | Xip |, |Dip |, AiXip +lip—Dyp |, | ¢t
T / \ T J : T ‘ T / I Y /
Inventory Determined Predicted Estimated Time
level schedule demand stockout counter

0 Methods

Robust optimization (RO)

A2C + EVDO guiding
A2C + RO guiding

Productivity Optimization Lab, NTU

Advantage-Actor-Critic (A2C)

)

Perfect information deterministic optimization (PIDO)
Expected value deterministic optimization (EVDO)

1 NA NA NA

0 NA NA NA

0 NA NA NA

0 NA NA NA
Time

1

0

Product

0

0

1 NA NA

0 NA NA o
=)
e
o

0 NA | NA 'y

0 NA NA

Time

1 1 1 0
0 0 1 NA 5 0 0 1 0
3
0 0 0 | NA = 0 0 0 0
0 0 0 NA 0 0 0 1
Time Time

N S\

Step Step Step
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
Episode 1 Episode 2 Episode 3 Episode 4
Realized objective (for oracle critic loss & advantage gradient calculation)
‘
/ Generalized Agent \
Network
———————— S Lupe | Critic
SR /| Network Action
e 4 gstribution quidance Oracle
No o eeded? Yes, (MM solver)
orade i Actor Oracle
#"| Network invoked
Calculate oracle
e ot No, take
/ argmax action
State Reward - Generated
Daily optimal action
scheduling P
problem
SUbSt‘FUtZ Lee, C.-Y., Huang, Y.-T., and Chen, P.-J.,
er episode . .
— perep 2024. Robust-optimization-guiding deep
Parameter Scheduling e reinforcement learning for chemical material
generator P“’b'elm Cyclical | handler production scheduling. Computers and
poo sampling

Optimization-Guided Learning

Chemical Engineering, 187, 108745.
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Reinforcement Learning embedded with Robust Optimization (RLeRO@ POLab

O Sensitivity Analysis [0 Solution Value Analysis
® Optimization-based models ® Expected value of perfect information (EVPI)
Delta sensitvty analysi — “How much a decision-maker would be willing to pay
for perfect information when using the model”
— subtract the PIDO value from the target model’s
— The robust models are less needed of perfect infor.
| |
o e
® RL-based models B e s
® Price of robustness
— Distance of objective e
- between the baseline
S (EVDO) and robust solution .\~ - ’
N — “How much it cost to apply
o000 | robust solutions”
e e — Adopt conservative policies ==
e G sttt in high demand fluctuation. T s

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 32



Takeaway )POLab

.. i .. i From Predictive to
O Prediction is the Process; Decision is the Purpose. Prescriptive Analytics

0 From Predictive to Prescriptive Analytics

[0 Optimization-Guided Learning (OGL) Predictive Prescriptive
® Find the “unchanged” power in “changing” env. (%) (%)

® Make the learning system more “stable”.

/

Light speed in vacuum (BEZEJE3%): 299,792,458 m/s o _
9 » Optimization-Guided
Planck constant ((EA7E # #): 6.62607015% 10734 J-s Learning
Electron mass (/& &): 9.10938291x 10731 kg
Avogadro constant (Ga{# IR E 8Y): 6.02214076% 1023 mol=*  We can observe them, but cannot change them.
Boltzmann constant (7252 #7): 1.38064852x 1023 J/K FATAREEZEE] » (HA gE R

Gravitational constant (& /7% %%): 6.67384x 10711 m3/(kg - s?)

https://www.youtube.com/watch?v=0BVIn2PFTYM
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 33
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