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O Smart Manufacturing and Five-Phase Data Science Analytics
0 From Predictive to Prescriptive Analytics
0 From Prescriptive to Optimization-Guided Learning

[0 Takeaway
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Smart Manufacturing @)POLab

Smart Manufacturing is a multi-objective decision-oriented system which has

the computational intelligence and self-adaptive learning ability to autonomously
optimize the manufacturing resources and processes.

Computational Intelligence: Multimodal Fusion w/ Diverse Data Sources
Self-learning: Real-Time Monitoring & Spatio-Temporal Adaptive Control
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Smart Manufacturing )POLab
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Source: International SEMATECH e-Diagnostics and EEC Guidance 2003
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Digital Transformation )POLab

O Digitization (EIiZ1E) O Digital Transformation (Efi7#22Y)
® Reduce paper transmission ® Not what you think, but what others see you.
® Reduce information asymmetry ® Re-define resources and develop a novel
value chain
O Digitalization (ZfIE1k) O Digital Reinvention (i1 & is)
® IT+OT: integrating technology into ® Re-claim the value proposition
the existing operation process via ® Organizational revolution: human-machine
ECRS for Lean Process collaboration

Digital
Transformation

Digitization Digitalization Digfz]

Reinvention

http://mckinseychina.com/wg-content/uploads/ZO1 7/10/McKinsey_Taiwans-Digital-Imperative-EN.pdf
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Redefinition of Resource (8M11)

Human-centered Internet of Things (loT)

6forma
tion

Resource 8M1l: A (Man) ~ #(Machine) - }(Material) - 75,4 (Method) ~ Jfll&(Measure) ~ KfE](Minutes) ~ &4
(Money) ~ IZtE(Mother nature/environment) ~ & & (information)

Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189-1207.
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When DS Applied to Practice...(many many technical issues) @Pf)Lab

Pitfall 1. Can ML/DS identify the important variables/features?
Pitfall 2. Can put all raw variables (e.g. 1M) into feature selection technique?
Pitfall 3. How to enhance the interpretability between predictors and response variable?

Pitfall 4. How to handle when transforming categorical variable into too many dummy
variables? (one-hot encoding)

Pitfall 5. Many missing values (e.g. over 50%) in one variable/column (or observation/row)
Pitfall 6. Does the multicollinearity problem matter?

Pitfall 7. Does a higher prediction accuracy support a better decision-making?

Pitfall 8. Does the selected variable not show the physical causal relation?

Pitfall 9. Merging data tables and handling many missing values after the merge.

Pitfall 10. How reliable is the conclusion derived from ML/DS?

Pitfall 11. How to start the ML/DS works”? How much data we need?

Pitfall 12. How to develop roadmap and future works for smart factory?

... many many

O0O00

OOO0O0O0000a0

Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189-1207.
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Process Anomaly? Sensor Failure?

INTERNATIONAL JOURNAL OF FRODUCTION RESEARCH
https://doi.org/10.1080/00207543.2024. 2318794

l‘l} Bheckhfurldaln:

] Data Collection

Autoencoder-based detector for distinguishing process anomaly and sensor
failure

Chia-Yen Lee, Kai Chang and Chien Ho

Department of Information Management, National Taiwan University, Taipei, Taiwan

ABSTRACT ARTICLE HISTORY
Anomaly detection is a frequently discussed topic in manufacturing. However, the issues of anomaly PReceived 8 July 2023
detection are typically attributed to the manufacturing process or equipment itself. In practice, the ~ Accepted 4 February 2024
sensor responsible for collecting data and monitoring values may fail, leading to a biased detection KEYWORDS

result — false alarm. In such cases, replacing the sensor is necessary instead of performing equip- Prognostics and health
ment maintenance. This study proposes an effective framework embedded with autoencoder-based management: sensor failure:
control limits that can dynamically distinguish sensor anomaly from process anomaly in real-time. anomaly detection; deep
We conduct a simulation numerical study and an empirical study of semiconductor assembling learning; autoencoder
manufacturers to validate the proposed framework. The results show that the proposed model

outperforms other benchmark methods and can successfully identify sensor failures, even under

conditions of (1) large variations in process values or sensor values and (2) heteroscedasticity effect.

This is particularly beneficial in various practical applications where sensors are used for numerical

Accelerometer

Current sensor

AE sensor

Productivity Optimization Lab, NTU

measurements and support equipment maintenance.

1. Introduction

Prognostics and health management (PHM) (Lu and Lee
2022; Mobley 2002) is an approach to assess the health
indicators of the equipment and estimate the life cycle,
aiming to reduce inspection and time-based maintenance
through real-time monitoring, incipient anomaly detec-
tion, and prediction of impending anomalies. In the
manufacturing industry, the cost of repairs and mainte-
nance typically accounts for 15-70% of total production
cost, and thus it is critical to investigate the mainte-
nance strategies, ranging from run-to-failure mainte-
nance (e.g. reactive maintenance, RM), preventive main-
tenance (PM), conditional-based maintenance (CBM), to
predictive maintenance (PdM). Deciding which main-
tenance strategy to apply to specific equipment condi-
tions is crucial for achieving a better trade-off between
maintenance frequency, capacity loss, and cost.
Typically, two anomalies may trigger the system alarm
due to the out of control of the monitored value during
machine degradation (Lee, Wu, and Hung 2021; Liu et al.
2019). We define these two anomalies as follows.! The
first is a process anomaly, indicating that the equipment
(or the environment where the equipment is located) may
gradually become unreliable or deteriorate during pro-

Optimization-Guided Learning

not refer to an outlier in the monitored value; instead,
it signifies a degradation process (e.g. characterised by
the Wiener process) or increasing variation that persists
after removing the outlier. In this case, PM is required to
repair or recover the equipment’s production function.
The second scenario in this study is a sensor anomaly,
signifying a problem unrelated to the manufacturing pro-
cess but rather a sensor failure causing the monitored
value to gradually drift upward or downward (i.e. time-
varying drift). In this scenario, we usually replace the
sensor instead of opting for PM. However, the monitored
value is implicitly affected by the mixed effect of both
scenarios, making it challenging to distinguish between
process anomaly and sensor anomaly.

Although sensor anomalies randomly occur in the fac-
tory, the health status of the sensor is typically tested
manually and periodically, with almost no inspection
data of the sensor recorded in the database. Conse-
quently, clarifying the root cause and distinguishing
between the two scenarios becomes a time-consuming
task. In practice, all anomalies are often treated as process
anomalies, potentially leading to incomplete resolution
of anomalies caused by the sensor failure and significant
waste in maintenance costs. The concession of treating

JE RS U S O ST SO, B S

Chia-Yen Lee, Ph.D. g



When DS Applied to Practice...(many many operational issues) @Pf)Lab

0 Four Shortages
® Money
® Time
® Talent
® Best Practice

[0 Build a new Al/DS team... but limited performance...

Clean data (preprocessing, imputation, noise, poor quality)

Keep asking user for relabelling... (quickly-changed environment)

Prompt + RAG + API... (eliminate hallucination)

Limited performance from Al projects... (low morale...staff quit...)

No team to bridge between User and Al

No user... (just for the sake of doing it)

Unclear KPI/OKR (project does not connect to the business strategy roadmap)
Al results argued by domain expert (“l won’t let Al take my job”)

® ... many many
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 10



Five-Phase Data Science Analytics )POLab
O A Journey from POINT, LINE, to PLANE
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Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189-1207
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One Example... )POLab

0 We typically build Al models for prediction or scenario analysis
® CNN, LSTM, SVM, Random Forest, Boosting, PLS, ...
® Then...Which model is better? What's the next step after prediction?

[0 Prediction is Risky!

® How about the potential risk (i.e. loss) after decision-making?

0 Example
® Model A with accuracy 95%, however, inaccurate prediction could lead to big loss.
® Model B with accuracy 90%, however, inaccurate prediction could lead to small loss.
® Which model do you prefer?

[ Predictive Thinking = Prescriptive Decision

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 12



Prescriptive Analytics and Risk Assessment )POLab

[0 Confusion Matrix for Binary Classification
® Two risks: false alarm (type |) and miss rate (type |l) > Prescriptive
® Trade-off between two misclassified errors - cost sensitive

Accuracy AUC
Model A 71.9% 70.2%

Model B 78.1% 78.9%

AUC: Area under the Curve of ROC

Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189-1207.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 13




@)POLab

Decisions take into account the RISKS associated
with the realization of uncertain events.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 14



Raw.MaterlaI Price I?re_dlctlon gnd Procurement Feature Extraction )Pt’)Lab
[0 Price Forecast (Predictive Analytics) povnsieam

Variable rc. c.c. Variable rc. c.c. Variable rc. c.c. Variable rc. c.c.
T Xo01 17.9591 0.5195 * X03 22597 0.8511 Y * X22 5.6786 0.7958
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1
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\
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I 1
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I 1
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2 ! rc.> 1.5
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Lee, C.-Y., Chou, B.-J., and Huang, C.-F. 2021. Data Science and Reinforcement Learning for Price Forecastifittand Raw Material Procurement

o in Petrochemical Industry. Advanced Engineering Informatics, 51, 101443. ' _
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Raw Material Price Prediction and Procurement @P‘GLab

0 Reinforcement Learning (Prescriptive Analytics)

Human Judgment current policy optimal Policy REINfOrcement Learning

p Inventory =@ Actual Price «=@= Forecast Price

| Inventory —@— Actual Price

Inventory (tonne) and BD price (US$/tonne)

Inventory (tonne) and BD price (US$/tonne)

]
<
<
<
<
<
<

2 (B[R
<
<
<
<

<

<

< &
%
S

<

<

&

Q|||
Blw|N (=
<

Current policy (s,S) policy Optimal policy

Average inventory (tonne) 3112 1812 3197
ravddetond
Amount purchased (tonne) 25,301 35,430 36,835
Total cost (USS) 44,596,113 42,324,694 39,091,618

Lee, C.-Y., Chou, B.-J., and Huang, C.-F. 2021. Data Science and Reinforcement Learning for Price Forecasting and Raw Material Procurement

o in Petrochemical Industry. Advanced Engineering Informatics, 51, 101443. . .
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 16



Prognostics and Health Management (PHM) o Feature Engineering €% POLab
O Remaining Useful Life (RUL) (Predictive Analytics) — — foreooman: Frequency Domain, Time:

frequency Domain
~NOIZ ® Data Source enture Eavation
6 ’ \
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‘,,'1’3;) \ Root Mean Square Value fri = % va:] X (i)2
o \T ) o o Skewness Value fai = # Z,Vzl X (i)
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Lee, C.-Y., T.-S. Huang, M.-K. Liu, and C.-Y. Lan. 2019. Data Science for Vibration Heteroscedasticity and Predictive Maintenance of Rotary Bearings. Energies., 12 (5), 801.

Jiang, W., Hong, Y., Zhou, B., He, X. and Cheng, C. 2019. “A gan-based anomaly detection approach for imbalanced industrial time series,” IEEE Access, vol. 7, pp. 608—619.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 17
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Prognostics and Health Management (PHM) @Pf)Lab
[0 Predictive Maintenance (PdM) Scheduling (Prescriptive Analytics)

® The proposed four-stage PM (preventive maintenance) algorithm provides a tradeoff
between machine workload (capacity loss) and condition (PHM indicator; yield loss), and
integrates non-bottleneck machines in upstream and downstream of the bottleneck.

* Machine defects
« PM records » Bottleneck »  Bottleneck . »[Non-bottleneck »| Non-bottleneck | Non-bottleneck
« PM pre-scheduling PM Planning PM plan Rescheduling Ner:Néo? Rescheduling New job PM Planning PM plan
— schedule schedule
Based on PHM indicator * Shutdown PM machine Based on new schedule of bottleneck

* Yield prediction
» Cost of yield loss
» Cost of capacity loss

Based on new job schedule
* Yield prediction

* Cost of yield loss

» Cost of capacity loss

* Reschedule of bottleneck  and queue time limit
* Reschedule of non-bottleneck in
upstream and downstream
* Minimize the over-queue-time jobs

Bottleneck machine PM at 9am

Before PM ® The system considers bottleneck and connects them to upstream and
#E A BT PM Al downstream;
o s . . b ® Supports machine yield prediction;
Jobs affected by PM 2022 Oct 3, 2022 ® Estimates the costs of yield loss and capacity loss;
B Jobs not affected by PM & ® Incorporates queue time limit and maintenance resources (available
labor hour) into the model;
After PM ® Considers the production uncertainty for developing stochastic dynamic
programming;
o e b . e ® And recommends the priority of machine PM.

Oct 2, 2022 Oct 3, 2022
Kung, L.-C., and Liao, Z.-Y. (2022)1. "Optimization for a joint predicttive maintenance and job scheduling problem with endogenous yield rates", IEEE Transactions on Automation Science
and Engineering, 19(3), 1555-1566.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 18
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Prediction is the Process; Decision is the Purpose.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 19



Workflow: From Predictive to Prescriptive Analytics

[0 1st stage: Predictive Analytics
® Estimation
® Prediction or forecast is difficult
— because it's about the FUTURE
® Estimation or imputation is reasonable

— Use known information to estimate
UNKNOWN information

OO0 Example
1st Stage
Input Hidden Output
Layer Layer Layer NN Desired
Output  Output
N
7@_' V1 Y1

5@_, V2 Y2
>@—> yn Yn

H{_/

Loss

Error back propagation

Productivity Optimization Lab, NTU

> -9
i=1

Optimization-Guided Learning

0 2nd stage: Prescriptive Analytics
® Optimization
® Decision-maker’s preference structure
— Multi-objective decision analysis

® Resource allocation optimization

— 8M1I: A(Man) ~ #(Machine) -
(Method) - JAl£(Measure) ~ FE(Minutes)

(Money) ~ Iz1%(Mother nature/environment) -

(information)
® Risk assessment & diversification

2nd Stage
min C'x
Minimize
II\E/Ir(igp(quSuEa)red » S.t. Ax ?
N Tx > 7

=0

&l (Material)

@)POLab

735

Cka

&l
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Problems with “Predict-then-Optimize” @)POLab

[ Prediction errors do not align with decision costs (Mufioz et al., 2022)
® The cost of over-prediction and under-prediction is often asymmetric.

Classifier Predict Classifier Predict

0 Example:

® |n electricity markets or reserve scheduling, system operators often intentionally bias
forecasts, since under-prediction incurs extremely high costs (CAISO, 2020).

O Insights

® The forecasting model should account for decision costs — sometimes, a biased forecast
actually leads to better decisions.

Mufoz, M.A., Pineda, S., and Morales, J.M., 2022. A bilevel framework for decision-making under uncertainty with contextual information. Omega, 108, 102575.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 21



Three Strategies for Predictive-Prescriptive Integration @Pt’)Lab

O Inspired by Feature Selection Technique

{
1 Filter Method i X Y ; Classifier]
® Feature Ranking \

- e e Em e -

® Method: correlation, p-value, coefficient ranking (w/ normalized data) in regression

Feedback
;
O Wrapper Method (CTTTmT e ‘.
® Iterative feedback loop X Y Classifler]
® Method: Best Subset Selection, Stepwise Regression - /
4 . )
00 Embedded Method _ Slassifier
® Shrinkage method w/ regularization term :I N y ‘u
1
® Method: LASSO, Ridge, ElasticNet { !
\___——~ " -~ -- J

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 22



Predictive and Prescriptive Integration @Pf)Lab

X k| v Classifier]

[0 Open Loop Model

® Predict-then-Optimize T _T
® Method: Three Phases including Forecasting Phase, Decision Phase, Realization Phase

— Realization: When the actual data is observed, the decision maker adapts by balancing
redispatch within scheduled reserves (tolerance) and calculating the exact cost.

Feedback

[0 Closed Loop Model (Garcia et al., 2025)

® |terative feedback loop: The model learns forecasting parameters (8) that directly

improve real operational outcomes, not only prediction accuracy. )
Or eargmin = Gq(z], 1)

® Method: Bi-Level Optimization vca g, T
st. g, =W(0,x) VteT

z; € arg minGy(z,7,) VteT

[0 Optimization-Guided Learning (Lee et al, 2024a; 2024b) 5
® Embedded method: use optimization to guide the model training process p——
® Method: Genetic Algorithm embedded with Reinforcement Learning (GAeRL), o
Reinforcement Learning embedded with Robust Optimization (RLeRO) St y

Garcia, J. D., Street, A., Homem-de-Mello, T., and Muioz, F. D., 2025. Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic

Reserves and Demand Forecasting. Operations Research, vol. 73, no. 1, pp. 22-39,
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 23



Closed Loop Model: Iterative Feedback Loop @)POLab

0 Example: Hyperparameter Optimization in Learning Algorithm

Hyperparameter 1

& @
® 9 & & ® ®
. o & o @ ®
& i @ 3 Qc. Q¢
g ® o o @ 3 ® £ o ©Og0
& © T
2 g ° 2
) @ i @ @
|~ [~ S
I = I o
@
@ ® ) ¢
Grid Search Random Grid Search

Bayesian Optimization

https://pub.aimind.so/understanding-hyperparameter-optimization-techniques-4a39d0494612

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 24



Closed Loop Model: Iterative Feedback Loop

1 Bayesian Optimization
n=3
L observation

f(6)

Bayesian optimization example: ThPee iterations of Bayesian optimization
minimizing a 1D function. The figure shows a Gaussian process (GP)
approximation (solid black line and blue shaded region) of the underlying
objective function (dotted black line). The figure also shows the acquisition
function (green). The acquisition function (GP-LCB, lower confidence bound) is
the difference of the mean and variance of the GP (multiplied by a constant),
which Bayesian optimization minimizes to determine where to sample next.

Productivity Optimization Lab, NTU

—-——

~

——A‘Nm
acquisition function (u(6))

n=4
e Objective function (f(9)) new observation

n=>5

Y posterior mean (u(6)) posterior uncertainty

= (u(6) = 0(6))

—
o Sy

W

Score (Model Performance)

0.66

@)POLab

ParBayesianOptimization in Action (Round 1)

Trees in Forest (K)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006606

https://en.wikipedia.org/wiki/Bayesian optimization

Optimization-Guided Learning

Chia-Yen Lee, Ph.D. 25
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Closed Loop Model: Iterative Feedback Loop @Pf)Lab
O Optimal Computing Budget Allocation (OCBA) (Chen and Lee, 2011)

® Given a limited computing power, OCBA finds the best alternative (i.e. parameter
design) by maximizing the probability of correct selection (PCS). OCBA maximizes

PCS, given a limited budget. OCBA Model
max PCS =1—Yicriun Pl > i
Cost Ny,-Nig| ZlEK,l#—'b {,le .ul}
: : \' Approximate Probability of Correct Selection(APCS)
s.t. Zzex n =T, PCS >APCS
: 5 : No more ;= 0,Vi €K
I E‘ computations et g; be the variance for design i. PCS can be
: : asymptotically maximized when the relationship between

two non-best design i and j, where i # j # b, in the [th

_ Design iteration. I+1 ~ ~ 2

Need more computations "i+ _ <0i/(#b - Hi))
for simulation n]l.+1 oj/(fip — fij)

Notations:

. i ; l 1— [+1

K: a set of designs (altematlves) + _O-b\/ZLEK Lib(n + /O‘l)

b € K: the best design . _

n;: # of simulation allocated for design i € K # of simulation replications for the best design

Ki: the mean of fitness value for design i

T the total computing budget OCBA should be the best Ranking and Selection process (Branke et al., 2007)

Chen, C. H. and Loo H. Lee. Stochastic simulation optimization an optimal computing budget allocation. Singapore Hackensack, NJ: World Scientific, 2011.
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Closed Loop Model: Iterative Feedback Loop @)POLab

[ Closed Loop Model (Garcia et al., 2025)

® Forecasts are generated by the prediction model W(6, x;), which produces y, based
on parameters 6 and features x;, and then used as inputs to optimize G, to obtain
optimal decision z; for each t Each decision z;(y;) is used as an input to optimize G,
which is then evaluated against the actual outcome y, using an assessment cost.
G, is used to update the forecasting parameter 6, creating feedback.

Xt Vi
~A k A
1 5,0, ) NN — e
Uncertamtyw ( Policy | [ Cost Or € arg min TZ Ga(z, Yt)
Forecast j L Planning J LAssessment 0€®, 1,7, teT
s.t. ];t = \P(Q, xt) VteT
Z, € arg minG,(z,1/,) VteT
[ Moded | ; € arg mnGy(z, 7))
L Training
* £ A
7, T Ga(z"(9:(0,x1)), y1)
{ye, X hrer
Garcia, J. D., Street, A., Homem-de-Mello, T., and Muioz, F. D., 2025. Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic
Reserves and Demand Forecasting. Operations Research, vol. 73, no. 1, pp. 22-39,
Chia-Yen Lee, Ph.D. 27
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Optimization-Guided Learning: Embedded Method

Predictive Analytics

(Data or Environment Simulator)

Stage 1
Data Analysis

[
[
[
[
[
[
[
[
[
[
Stage 2

Semi-Synthetic
Data Generation

Data Collection

EBO-BLP Predictive (EBP) Module

Data Preprocessing

l

Model Construction

l

Evaluation

External Environmental Simulation

Y

Predicted EBO and BLT

Simulated Temperature

Simulation Construction

1

Semi-Synthetic EBO and BLT

Prescriptive Analytics

@)POLab

Action
\ Environment | Agent
I
EBO-BLT SImulation Module State ! Actor
, 1 |
Quality-Driven Reward Function | Critic
I
Reward

Chen, Y.-W., Li, Y.-E., and Lee, C.-Y. (2025). Virtual-Metrology-Informed Reinforcement Learning for Adaptive Epoxy Quality Control in Semiconductor Packaging Die Bonding.

Working Paper.

Productivity Optimization Lab, NTU

Optimization-Guided Learning
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@)POLab

Optimization-Guided Learning (OGL)

- Genetic Algorithm embedded with Reinforcement Learning (GAeRL)

Lee, C.-Y., Ho, C.-Y,, Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with
reinforcement learning for petrochemical melt-flow-index production scheduling. Applied Soft Computing, 159,
111630.

- Reinforcement Learning embedded with Robust Optimization (RLeRO)

Lee, C.-Y., Huang, Y.-T., and Chen, P.-J., 2024. Robust-optimization-guiding deep reinforcement learning for
chemical material production scheduling. Computers and Chemical Engineering, 187, 108745.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 29



Genetic Algorithm embedded with Reinforcement Learning (GAeRL) @Pf)qu
0 Petrochemical Production Scheduling ({6 L FHER24514)

® Objective Functions
— Minimize tardiness (satisfying due date)
» Total Tardiness = };¢; Tj = X ;¢; max{C; — D;, 0}

— Minimize # of conversion, transition time, volume of transition product
> Transition Prodcuts = Y ;cr(MFI;,, — MFI,)?
® Constraints
— Type Conversion Constraint
— Specific Group Constraint
— Melt-flow-index (MFI) Slowly-Rise-and-Fall Constraint
— Sequence-Dependent Transition Time Constraint

\ COHVGI’SIOI’I Product

—A—?—AA-*A
T.c—‘-—A—d/—A-“—

Blémer, F., & Gunther, H.-O. (1998). Scheduling of a multi-product batch process in the chemical industry. Computers in industry, 36(3), 245-259.
Blomer, F., & Gunther, H.-O. (2000). LP-based heuristics for scheduling chemical batch processes. International Journal of Production Research, 38(5), 1029-1051.
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Scheduling Methodology @Pt’)Lab

O JSP is among the hardest combinatorial optimization problems.
® NP-hard problem

O Heuristic Method (Priority Rule)
® Shortest processing time (SPT), earliest due date (EDD), etc.
® Pros: easy to understand /\
® Cons: poor performance for complicated production line

Local optimum
Short running time

O Meta-Heuristic Algorithm (Tabu, Simulated Annealing, Genetic Algorithm)
® Approximated-optimization approach
® Pros: provide a good solution efficiently
® Cons: cannot guarantee the global optimum

O Reinforcement Learning
® Optimal control approach to take actions in a dynamic environment
® Pros: consider decision over time for dynamic flexible job shop scheduling (DFJSS) v
® Cons: convergence issue in a large state space and action space

Global optimum
O Mathematical Programming Long running time

® Optimization-based approach formulated by mixed integer programming
® Pros: Guarantee global optimum
® Cons: computational burden for large-scale problem (not suitable for frequent rescheduling)

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D.



Genetic Algorithm (GA) @Pf)Lab

Encoding
DNA, genes, & chromosomes Chromosomes represent potential solutions TWO-pOint order crossover mechanism
— v : Crossover point
Initial population L T

Generate a set of chromosomes

+ Parent 1 A B C D E F G H
> Crossover and mutation
Generate offspring from parents H E D A B C F G
Nucleus Parent 2
Fitness computation @

Evaluate the chromosome quality

v

Selection mechanism Offspring2 = H A C D E F B G
Solution comparison and random selection

v

m
-
w)
>
=)
(@]
(9}
I

Offspring 1

{ Chromosome

Nitrogenous bases
[ Adenine
] Guanine

Arbitrary multiple-point shift mutation mechanism

E I:;ty:;':: New population
Exchange order CECASD
Position A B C D E F
Chromosome B D C E A F
Best solution New Chromosome E D B C A F

Holland, J. H. (1975). “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor.
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 32



How does RL guide GA?

[0 Population Similarity

Population similarity: cluster the population with DBSCAN, and then use the
Spearman rank correlation coefficient to estimate the correlation within the groups
and between the groups.

Correlation: total - within group = between groups

Population similarity as the correlation within the groups divided by the number of
the clusters.
Guide the mutation and crossover to balance exploration and exploitation.

— if chromosomes appear similar, the population might be premature: need exploration and
increase mutation and crossover rates

— if chromosomes appear dissimilar, the population are not converged: need exploitation
and decrease mutation and crossover rates.

] Phase of Iterations

Phase of iteration: the number of iterations that GA did not find the better solutions.

[0 State Space in RL

Productivity Optimization Lab, NTU

Discretize the two states by assigning quartiles to each value (i.e., the state space
consists of the 4x4=16 states).

Optimization-Guided Learning

@)POLab

Chia-Yen Lee, Ph.D. 33



Reinforcement Learning Elements @)POLab
O Action

] Reward

Rate tuning and mechanism design related to crossover and mutation

Rate tuning: “fix”, “increase”, and “decrease” by multiplying the original rate by 1, 1.02, and 0.98.
Combining the crossover and mutation rates to generate 3x3=9 actions.

th 1

Crossover mechanism: “one-point order crossover’, “two-point order crossover”, and “position-
based order crossover”

Mutation mechanism: “adjacent two-point change mutation”, “arbitrary multiple-point shift
mutation”, and “shift change mutation”.

Combining the crossover and mutation mechanisms to generate 3x3=9 actions

Two-objective reward: minimization of (1) transition products and (2)
total tardiness.

Hypervolume as the volume surrounded by the solutions and a !
reference point (REF) (i.e., the poorest solution having the highest limit @ ---1 |

L. $2 |
of each objective). 3@ -

Goal: maximize the hypervolume: If the present hypervolume indicator Min Transition Products
is better than last time, the reward is with +1; otherwise, if it is worse
than last time, the reward is with -1.

Min Total Tardiness

>

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 34



GA embedded with RL (GAeRL) %) POLab

NSGA-II with Optimal POlicy ChromosomesE}Er?egg:ggential solutions
N Ty . Pseudocode of GAeRL
vy : Begin
Define the State, Initial population
Action, and Generate a set of chromosomes Model-based RL

Reward in the
genetic algorithm

While not maximal number of iterations
Repeat NSGA-II with random action
Collect data (state, action, reward)

v

Crossover and mutation
Generate offspring from parents

End
Estimate the transition matrix and reward matrix
MDP (value iteration)

Repeat NSGA-IT
100 times with

Combine parent and offspring

random actions Eliism strategy Obtain optimal policy (adjustment of mechanism or rate of crossover and mutation)
Tune the parameters Select the optimal
by optimal policy mechanism of i i
Estimate the (crossover rate and crossover and %2:::2;?(&:;;‘:5;35;2 M ) o
transition matrix mutation rate) mutation 7 Input: Optimal policy and initial parameters
Generate a population from EEH or generate a population randomly
f ) Fitness evaluation While not termination condition
| Non-dominated sorting Generate offspring by crossover and mutation
Transition matrix Optimal policy + Combine offspring and parent population
and (get the optimal Selection mechanism For each chromosome from offspring and parents
Reward matrix policy from Front rank and crowding distance Compute the fitness function

model-based RL) Non-dominated sorting

Select chromosomes based on non-domination front rank and crowding distance
Build new population

| New population

I
|
I
|
|
|
|
|
I
|
|
I
|
I
and reward matrix I
I
|
I
|
I
|
|
|
|
|
I
|
|
I

MbDP Calculate the state Compute the state according to new population
including population Choose optimal policy according to the state
similarity and phase of Tune rate or select mechanism of mutation and crossover
iterations End
Decode to the petrochemical production schedule
Optimal policy S End

Lee, C.-Y.,, Ho, C.-Y,, Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with reinforcement learning for petrochemical melt-flow-index production
scheduling. Applied Soft Computing, 159, 111630.
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Empirical Study of Petrochemical Scheduling )POLab

[0 Petrochemical Factory

® Leading manufacturer & supplier of polypropylene in Taiwan

— Product portfolio consists primarily of SBS, SIS, SEBS, and SEP, including compound materials
for footwear, modified asphalt, waterproofing membranes, adhesives, and plastics modification.

® Data Source: manufacturing execution system (MES)
® Time: First half of 2019

® Data Size

— 38 orders including 199 batches, 4 types of catalyst, 4 types of donors, and 12 precedence
groups.

— Transform the data for proprietary information protection without loss of generality.
® Results

— Reduce transition products in the petrochemical production line by more than 10% through
minimizing the change of the Material Flow Index (MFI).

— It ensures the fulfilment of customer due dates.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 36



Empirical Study of Petrochemical Scheduling @)POLab

OO0 State Space
® 16 states (combination of 4 levels of similarity and 4 levels in phase due to quantile discretization).
0 Action Space

® 9 actions (combination of 3 levels in crossover and 3 levels in mutation) with respect to rate tuning
and mechanism selection, respectively.

O Initial Parameters Settings
® Population size 20, crossover rate 0.8, and mutation rate 0.2.

| Action ID | Crossover ________ Mutation ______

[l | One-point order crossover Adjacent two-point change

| Action ID | Crossover rate Mutation rate

R1 Decrease Decrease Two-point order crossover Adjacent two-point change
Fix Decrease Position-based order . :
Adjacent two-point change
Increase Decrease crossover
Decrease Fix One-point order crossover Arbitrary multiple-point shift
R5 . . . . . . .
(baseline) Fix Fix (baseline) Two-point order crossover Arbitrary multiple-point shift
Increase Fix Position-based order . : : :
Arbitrary multiple-point shift
Decrease Increase crossover
Fix Increase One-point order crossover Shift change mutation
Increase Increase Two-point order crossover Shift change mutation
Position-based order . :
Shift change mutation
crossover

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 37



Empirical Study of Petrochemical Scheduling @Pf)Lab

0 Performance Comparison (with 30 replications)

Six Algorithms: (1) Engineering Experience Heuristic (EEH), (2) NSGA-Il, (3) NSGA-II with random
action (NSGAw/RA) for rate tuning of crossover and mutation, (4) NSGA-Il with random action
(NSGAW/RA) for mechanism selection of crossover and mutation, (5) NSGAeRL for rate tuning, (6)

NSGAeRL for mechanism selection. (Note: NSGAW/RA has the same set of actions with NSGAeRL, but with equal
probability of selecting actions rather than the optimal policy.)

R1 R4 R1 R4 M7 M6 M1 M6
RS RS R4 R9 M4 M8 M4 M2
R3 R6 R3 R1 Ml M4 M6 M8
RS R4 RS R4 M4 M5 M8 M8
Mean NSGAwWRA NSGAWR..A NSGAeRL NSGAeRL
(Standard EEH NSGA-II for Rate for Mechanism . . .
.. . . for Rate Tuning for Mechanism Selection
Deviation) Tuning Selection
Transition 5993 7247 7603 6974 6791 6517
Products (0) (950) (1283) (952) (940) (841)
Total 672 316 292 260 256 234
Tardiness (0) (98) (78) (44) (70) (38)
# of 1 1287 872 1597 1418 1767
Iterations (0) (490) (463) (378) (489) (292)
CPU Time 3 1122 924 1474 1466 1722
(second) (0) (448) (442) (337) (483) (280)

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 38



@)POLab

Optimization-Guided Learning (OGL)

- Genetic Algorithm embedded with Reinforcement Learning (GAeRL)

Lee, C.-Y., Ho, C.-Y,, Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with
reinforcement learning for petrochemical melt-flow-index production scheduling. Applied Soft Computing, 159,
111630.

- Reinforcement Learning embedded with Robust Optimization (RLeRO)

Lee, C.-Y., Huang, Y.-T., and Chen, P.-J., 2024. Robust-optimization-guiding deep reinforcement learning for
chemical material production scheduling. Computers and Chemical Engineering, 187, 108745.

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 39



Reinforcement Learning embedded with Robust Optimization (RLeRO@ POLab

0 Petrochemical Production Scheduling

® Uncertainty

— Demand fluctuation and yield rate

— Polyhedral uncertainty sets encode a budget of uncertainty into cardinality constraints.
® Objective function

— To maximize the gross profit of the chemical production schedule

S L T
— Max | Xie; Lpep Vid ixip - IZL'EI Yipep Ci Sip| Zier Ci' ligf — | Zier ZjEI,jiinEP Cij Zijp

¥ $ § L 4

Sales profit Inventory cost Stockout cost Transition cost
® Constraints

B State initialization for subproblems B Machine occupancy constraint

Sipy = SL,Vi €l x;p = X;;,Vi€l,f € FU{R} ierXip = 1L,YpEP
B Mass balance constraint B Variable domains

Sip = Sip-1) T AjXip — Dip + lip, ViELLpEP Xip €{0,1}, Vi€ I,p € PU{R)}
B Production transition identification zij, €E{0,1}L,Viel,jEL,p€EP

Dier Zijp = Xjp,V ELLpEP Sip 2 0,Vi €1,p € PU{R)

el Zijp = Xi(p-1), Vi€ Lp EP li,20,Viel,p€P

Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 40



Reinforcement Learning embedded with Robust Optimization (RLeRO@ Pt’)qu

0 Action

® Network output discrete probability distribution A
® Action a is sampled from A, corresponding to x;,,.

0 Episode

Product

® Finish a complete scheduling window and rolling to the next.

0 Reward

® The change in objective value after a particular action

0 State encoding

state, = (| lip |, | Xip |, |Dip |, AiXip +lpp—Dy |, | ¢t
T g L Y / : T " T / I Y J
Inventory Determined Predicted Estimated Time
level schedule demand stockout counter

0 Methods

Robust optimization (RO)

A2C + EVDO guiding
A2C + RO guiding

Productivity Optimization Lab, NTU

Advantage-Actor-Critic (A2C)

)

Perfect information deterministic optimization (PIDO)
Expected value deterministic optimization (EVDO)

1 NA NA NA

0 NA NA NA

0 NA NA NA

0 NA NA NA
Time

Product

1

0

0

0

1 NA | NA

0 NA NA

0 NA NA

0 NA NA
Time

Product

1 1 1
0 0 1 NA g 0 0 1 0
3
0 0 0 | NA = 0 0 0 0
0 0 0 NA 0 0 0 1
Time Time

N S\

Step Step Step
1 1 0] 0 1 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
Episode 1 Episode 2 Episode 3 Episode 4
Realized objective (for oracle critic loss & advantage gradient calculation)
:
/ Generalized Agent \
Network
——————— FeT L | Critic
Calculat ,.’% Network Action
sdvntage N/ distribution uidance Oracle
| gradient \}" o —
No ron AN | e———leeded’ Yes, (MM solver)
Tlcn Actor Oracle
<" Network invoked
Calculate oracle
e ot No, take
/ argmax action
State Reward - Generated
Daily optimal action
scheduling P
problem
SUbSt‘F“tZ Lee, C.-Y., Huang, Y.-T., and Chen, P.-J.,
er episode . L
- perep 2024. Robust-optimization-guiding deep
Schedal olling . . . .
Paer:;‘rr\:ttsrr ;rzbéﬁg : window relnforcgment Iearqlng for chemical material
g oy Cyclical handler production scheduling. Computers and

Optimization-Guided Learning

sampling

Chemical Engineering, 187, 108745.
Chia-Yen Lee, Ph.D. 41



Reinforcement Learning embedded with Robust Optimization (RLeRO@ POLab

[0 Sensitivity Analysis

® Optimization-based models
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Objective mean

630000 1
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c

[
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o
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560000 -

540000 -
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Delta sensitivity analysis

[0 Solution Value Analysis

® Expected value of perfect information (EVPI)

650000 1

640000 1

Expected value of perfect information

00000

00000

00000

Delta (demand distortion ra

|
[
— PIDO
EVDO
== RO
T T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 35
Delta (demand distortion rate)
Delta sensitivity analysis
— PIDO
A2C
—e— A2C+DO
-@- A2C+RO
T T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 35

® Price of robustness

— Distance of objective
between the baseline
(EVDO) and robust solution

— “How much it cost to apply
robust solutions”

— Adopt conservative policies

Delta (demand distortion rate)

Productivity Optimization Lab, NTU

in high demand fluctuation.
Optimization-Guided Learning

— “How much a decision-maker would be willing to pay
for perfect information when using the model’

— subtract the PIDO value from the target model’s
— The robust models are less needed of perfect infor.

Expected value of perfect information

15 2.0
Delta (demand distortion rate)

Price of robustness

=== RLeRO

20000 4 RO

10000 -

\
01—~

—10000 +

—20000 -

—30000 -

T T T T T T T T
0.0 0.5 10 15 2.0 2.5 3.0 35
Delta (demand distortion rate)

Chia-Yen Lee, Ph.D. 42



Takeaway I-Ching teaches people how to ¢)POLab

1. Error/MSE focus 1. Objective/KPI focus

2. Data-driven address the Change 2. Decision-oriented

3. Causality 3. Resource Allocation

4. Find the change in unchanging env. Predict-then-Optimize 4. Find the unchange in changing env.
- 2% %8¢ P (infor. content) - %Y 357 # (robustness)

, Train/Guide \

gepr?iigd Predictive Prescriptive | ~esource
Corecast | Analytics Analytics | ortfolio
(Environ.) (Human) Optlmlztlon

St

X Reflection ,

Closed Loop Model

2, Optimization-Guided Learning
® |

S—

Tang, L. and Meng, Y., 2021. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 8, 2, 157-171.
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Takeaway )POLab

. ) o ] From Predictive to
[0 Prediction is the Process; Decision is the Purpose. Prescriptive Analytics

0 From Predictive to Prescriptive Analytics

O Optimization-Guided Learning (OGL) Predictive
® Find the “unchanged” power in “changing” env. (E%)
® Make the learning system more “stable”.

Light speed in vacuum (BEZEJ63%): 299,792,458 m/s

. - Optimization-Guided
Planck constant (%EH7E 5 8): 6.62607015x 1073% J's Learning

Electron mass (/& &): 9.10938291x 10731 kg

Avogadro constant (G R %2): 6.02214076x% 1023 mol~!  \We can observe them, but cannot change them.
Boltzmann constant (7242 &%) 1.38064852x 10723 J/K A H e ZZE] - (HA B MM
Gravitational constant (& /75 %%): 6.67384x 10711 m3/(kg - s?)

https://www.youtube.com/watch?v=0BVIn2PFTYM
Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D. 44



Thanks for your attention!

B EBEEARAN —

Dept. of Information Management,
National Taiwan University

Name: Chia-Yen Lee

Phone: +886-2-33661206

Email: chiayenlee@ntu.edu.tw
Web: http://polab.im.ntu.edu.tw/
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