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Agenda

 Smart Manufacturing and Five-Phase Data Science Analytics

 From Predictive to Prescriptive Analytics

 From Prescriptive to Optimization-Guided Learning

 Takeaway
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Smart Manufacturing is a multi-objective decision-oriented system which has 

the computational intelligence and self-adaptive learning ability to autonomously 

optimize the manufacturing resources and processes.

Computational Intelligence: Multimodal Fusion w/ Diverse Data Sources

Self-learning: Real-Time Monitoring & Spatio-Temporal Adaptive Control

Smart Manufacturing
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Smart Manufacturing
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Source: International SEMATECH e-Diagnostics and EEC Guidance 2003
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Digital Transformation
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http://mckinseychina.com/wp-content/uploads/2017/10/McKinsey_Taiwans-Digital-Imperative-EN.pdf

Digitization Digitalization
Digital

Transformation
Digital

Reinvention

 Digitization (數位化)

⚫ Reduce paper transmission 

⚫ Reduce information asymmetry

 Digitalization (數位優化)

⚫ IT+OT: integrating technology into 

the existing operation process via 

ECRS for Lean Process

 Digital Transformation (數位轉型)

⚫ Not what you think, but what others see you.

⚫ Re-define resources and develop a novel 

value chain

 Digital Reinvention (數位再造)

⚫ Re-claim the value proposition

⚫ Organizational revolution: human-machine 

collaboration
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Redefinition of Resource (8M1I)
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Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189–1207.
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Resource 8M1I: 人(Man)、機(Machine)、料(Material)、方法(Method)、測量(Measure)、時間(Minutes)、資金
(Money)、環境(Mother nature/environment)、資訊(information)
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When DS Applied to Practice…(many many technical issues)

 Pitfall 1. Can ML/DS identify the important variables/features?

 Pitfall 2. Can put all raw variables (e.g. 1M) into feature selection technique?

 Pitfall 3. How to enhance the interpretability between predictors and response variable? 

 Pitfall 4. How to handle when transforming categorical variable into too many dummy 

variables? (one-hot encoding)

 Pitfall 5. Many missing values (e.g. over 50%) in one variable/column (or observation/row) 

 Pitfall 6. Does the multicollinearity problem matter?

 Pitfall 7. Does a higher prediction accuracy support a better decision-making? 

 Pitfall 8. Does the selected variable not show the physical causal relation?

 Pitfall 9. Merging data tables and handling many missing values after the merge. 

 Pitfall 10. How reliable is the conclusion derived from ML/DS?

 Pitfall 11. How to start the ML/DS works? How much data we need?

 Pitfall 12. How to develop roadmap and future works for smart factory?

 … many many

8

Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189–1207.
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Process Anomaly? Sensor Failure?

 Data Collection

9

Current sensor AE sensorAccelerometer



Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D.

When DS Applied to Practice…(many many operational issues)

 Four Shortages

⚫ Money

⚫ Time

⚫ Talent

⚫ Best Practice

 Build a new AI/DS team… but limited performance…

⚫ Clean data (preprocessing, imputation, noise, poor quality)

⚫ Keep asking user for relabelling… (quickly-changed environment)

⚫ Prompt + RAG + API… (eliminate hallucination)

⚫ Limited performance from AI projects… (low morale…staff quit…)

⚫ No team to bridge between User and AI

⚫ No user… (just for the sake of doing it)

⚫ Unclear KPI/OKR (project does not connect to the business strategy roadmap)

⚫ AI results argued by domain expert (“I won’t let AI take my job”)

⚫ … many many

10
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Five-Phase Data Science Analytics
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Descriptive
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Diagnostic

Analytics

Predictive

Analytics

Prescriptive

Analytics

Autonomous
Cognitive + Automation
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Interpretation
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Information Diversity

Trend Pattern
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Resource Leveraging

 A Journey from POINT, LINE, to PLANE

Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189–1207.

見 識 謀 斷 行

Spatio-Temporal 

Real-time Monitoring

Domain Adaptation

Financial Dashboard 



Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D.

One Example…

We typically build AI models for prediction or scenario analysis

⚫ CNN, LSTM, SVM, Random Forest, Boosting, PLS, …

⚫ Then…Which model is better? What’s the next step after prediction?

 Prediction is Risky!

⚫ How about the potential risk (i.e. loss) after decision-making?

 Example

⚫ Model A with accuracy 95%, however, inaccurate prediction could lead to big loss.

⚫ Model B with accuracy 90%, however, inaccurate prediction could lead to small loss.

⚫ Which model do you prefer?

 Predictive Thinking → Prescriptive Decision

12
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Prescriptive Analytics and Risk Assessment

 Confusion Matrix for  Binary Classification

⚫ Two risks: false alarm (type I) and miss rate (type II) → Prescriptive

⚫ Trade-off between two misclassified errors → cost sensitive

13

Testing

Accuracy AUC

Model A 71.9% 70.2%

Model B 78.1% 78.9%

Model A
Predict

FAIL PASS

True
FAIL 61 7

PASS 29 31

Model B
Predict

FAIL PASS

True
FAIL 47 21

PASS 7 53

AUC: Area under the Curve of ROC
Lee, C.-Y., and Chien, C.-F., 2022. Pitfalls and protocols of data science in manufacturing practice. Journal of Intelligent Manufacturing, 33, 1189–1207.
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Decisions take into account the RISKS associated 

with the realization of uncertain events.

14
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Raw Material Price Prediction and Procurement
 Price Forecast (Predictive Analytics)

15

Lee, C.-Y., Chou, B.-J., and Huang, C.-F. 2021. Data Science and Reinforcement Learning for Price Forecasting and Raw Material Procurement 

in Petrochemical Industry. Advanced Engineering Informatics, 51, 101443. 

Butadiene DownstreamUpstreamCrude Oil

Variable r.c. c.c.

X03 2.2597 0.8511

X04 0.8613 0.1990

X05 1.6192 0.5878

X06 -0.3626 -0.1536

X07 2.0611 0.5830

X08 -0.4406 -0.4160

X09 0.0002 0.4336

Variable r.c. c.c.

Y

X10 0.9936 0.9997

X11 1.0051 0.9997

X12 0.8651 0.8741

X13 0.9153 0.8584

X14 0.8382 0.9401

X15 0.8153 0.9406

X16 0.8615 0.9390

X17 0.8751 0.8425

X18 0.8802 0.9512

X19 0.2148 0.0719

X20 0.3655 0.1411

X21 0.0012 0.4902

Variable r.c. c.c.

X01 17.9591 0.5195

X02 18.3465 0.5229

Variable r.c. c.c.

X22 5.6786 0.7958

X23 0.7643 0.9258

X24 0.8698 0.9424

X25 0.9213 0.7151

X26 0.8003 0.9272

X27 0.8897 0.9313

X28 0.0008 0.5036

X29 0.0005 0.4319

X30 1.0112 0.9810

X31 1.3185 0.9753

X32 0.1570 0.1345

X33 0.7595 0.3052

X34 1.4520 0.6067

Legend

■ Butadiene(BD)

■ r.c. > 1.5

■ r.c. < 0

★
Important variables identified 

by feature selection

Feature Extraction

Prediction Model
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Current policy (s,S) policy Optimal policy

Average inventory (tonne) 3112 1812 3197
Standard deviation of 

inventory (tonne)
743 302 489

Amount purchased (tonne) 25,301 35,430 36,835

Total cost (US$) 44,596,113 42,324,694 39,091,618
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 Reinforcement Learning (Prescriptive Analytics)

Lee, C.-Y., Chou, B.-J., and Huang, C.-F. 2021. Data Science and Reinforcement Learning for Price Forecasting and Raw Material Procurement 

in Petrochemical Industry. Advanced Engineering Informatics, 51, 101443. 

Reinforcement LearningHuman Judgment

Raw Material Price Prediction and Procurement
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Prognostics and Health Management (PHM)

 Remaining Useful Life (RUL) (Predictive Analytics)

17

http://www.li-ming.com.tw/

Lee, C.-Y., T.-S. Huang, M.-K. Liu, and C.-Y. Lan. 2019. Data Science for Vibration Heteroscedasticity and Predictive Maintenance of Rotary Bearings. Energies., 12 (5), 801.

Jiang, W., Hong, Y., Zhou, B., He, X. and Cheng, C. 2019. “A gan-based anomaly detection approach for imbalanced industrial time series,”IEEE Access, vol. 7, pp. 608–619.

Amplitude

Time

(Obs.)

deterioration

⚫ Feature Engineering
─ Time Domain, Frequency Domain, Time-

frequency Domain

⚫ Data Source

─ vibration acceleration signal

⚫ Motor

⚫ Bearing ⚫ RUL Prediction

http://www.li-ming.com.tw/
http://www.li-ming.com.tw/
http://www.li-ming.com.tw/
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Prognostics and Health Management (PHM)

 Predictive Maintenance (PdM) Scheduling (Prescriptive Analytics)

⚫ The proposed four-stage PM (preventive maintenance) algorithm provides a tradeoff 

between machine workload (capacity loss) and condition (PHM indicator; yield loss), and 

integrates non-bottleneck machines in upstream and downstream of the bottleneck.

18

Non-bottleneck
Rescheduling

Non-bottleneck
PM Planning

Bottleneck
Rescheduling

Bottleneck

PM Planning PM plan New job 

schedule

Non-bottleneck
PM plan

• Machine defects

• PM records

• PM pre-scheduling

Based on PHM indicator

• Yield prediction

• Cost of yield loss

• Cost of capacity loss

• Shutdown PM machine

• Reschedule of bottleneck
Based on new schedule of bottleneck 

and queue time limit

• Reschedule of non-bottleneck in 

upstream and downstream

• Minimize the over-queue-time jobs

New job 

schedule

Based on new job schedule

• Yield prediction

• Cost of yield loss

• Cost of capacity loss

Bottleneck machine PM at 9am

Before PM

After PM    

Jobs affected by PM

Jobs not affected by PM

⚫ The system considers bottleneck and connects them to upstream and 

downstream;

⚫ Supports machine yield prediction;

⚫ Estimates the costs of yield loss and capacity loss;

⚫ Incorporates queue time limit and maintenance resources (available 

labor hour) into the model;

⚫ Considers the production uncertainty for developing stochastic dynamic 

programming;

⚫ And recommends the priority of machine PM.

Kung, L.-C., and Liao, Z.-Y. (2022). "Optimization for a joint predictive maintenance and job scheduling problem with endogenous yield rates", IEEE Transactions on Automation Science 

and Engineering, 19(3), 1555-1566. 
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Prediction is the Process; Decision is the Purpose.

19
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Workflow: From Predictive to Prescriptive Analytics

 1st stage: Predictive Analytics

⚫ Estimation

⚫ Prediction or forecast is difficult

─ because it’s about the FUTURE

⚫ Estimation or imputation is reasonable

─ Use known information to estimate 

UNKNOWN information

20

 2nd stage: Prescriptive Analytics

⚫ Optimization

⚫ Decision-maker’s preference structure

─ Multi-objective decision analysis

⚫ Resource allocation optimization

─ 8M1I: 人(Man)、機(Machine)、料(Material)、方法
(Method)、測量(Measure)、時間(Minutes)、資金
(Money)、環境(Mother nature/environment)、資訊
(information)

⚫ Risk assessment & diversification

…
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Output

Desired 

Output

Loss
Error back propagation

Minimize

Mean Squared

Error (MSE)

 Example

min 𝑪𝑇𝒙
s.t.  𝑨𝒙 ≥ 𝒃
       ෩𝑻𝒙 ≥ ෤𝒓
         𝒙 ≥ 𝟎

2nd Stage

1st Stage
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Problems with “Predict-then-Optimize”

 Prediction errors do not align with decision costs (Muñoz et al., 2022)

⚫ The cost of over-prediction and under-prediction is often asymmetric.

 Example:

⚫ In electricity markets or reserve scheduling, system operators often intentionally bias 

forecasts, since under-prediction incurs extremely high costs (CAISO, 2020).

 Insights

⚫ The forecasting model should account for decision costs — sometimes, a biased forecast 

actually leads to better decisions.

21

Muñoz, M.A., Pineda, S., and Morales, J.M., 2022. A bilevel framework for decision-making under uncertainty with contextual information. Omega, 108, 102575.

Classifier 

A

Predict

FAIL PASS

True
FAIL 61 7

PASS 29 31

Classifier

B

Predict

FAIL PASS

True
FAIL 47 21

PASS 7 53
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Three Strategies for Predictive-Prescriptive Integration

22

 Inspired by Feature Selection Technique 

 Filter Method
⚫ Feature Ranking
⚫ Method: correlation, p-value, coefficient ranking (w/ normalized data) in regression

Wrapper Method
⚫ Iterative feedback loop
⚫ Method: Best Subset Selection, Stepwise Regression

 Embedded Method
⚫ Shrinkage method w/ regularization term
⚫ Method: LASSO, Ridge, ElasticNet

X Y Classifier

X Y Classifier

Feedback

X Y

Classifier
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Predictive and Prescriptive Integration

Open Loop Model

⚫ Predict-then-Optimize

⚫ Method: Three Phases including Forecasting Phase, Decision Phase, Realization Phase

─ Realization: When the actual data is observed, the decision maker adapts by balancing 

redispatch within scheduled reserves (tolerance) and calculating the exact cost.

 Closed Loop Model (Garcia et al., 2025)

⚫ Iterative feedback loop: The model learns forecasting parameters (θ) that directly 

improve real operational outcomes, not only prediction accuracy.

⚫ Method: Bi-Level Optimization

 Optimization-Guided Learning (Lee et al, 2024a; 2024b)

⚫ Embedded method: use optimization to guide the model training process 

⚫ Method: Genetic Algorithm embedded with Reinforcement Learning (GAeRL), 

Reinforcement Learning embedded with Robust Optimization (RLeRO) 

23

Garcia, J. D., Street, A., Homem-de-Mello, T., and Muñoz, F. D., 2025. Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic 

Reserves and Demand Forecasting. Operations Research, vol. 73, no. 1, pp. 22–39, 

X Y Classifier

X Y Classifier

Feedback

X Y

Classifier
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Closed Loop Model: Iterative Feedback Loop

24

https://pub.aimind.so/understanding-hyperparameter-optimization-techniques-4a39d0494612

 Example: Hyperparameter Optimization in Learning Algorithm
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Closed Loop Model: Iterative Feedback Loop

 Bayesian Optimization

25

Bayesian optimization example: Three iterations of Bayesian optimization 
minimizing a 1D function. The figure shows a Gaussian process (GP) 
approximation (solid black line and blue shaded region) of the underlying 
objective function (dotted black line). The figure also shows the acquisition 
function (green). The acquisition function (GP-LCB, lower confidence bound) is 
the difference of the mean and variance of the GP (multiplied by a constant), 
which Bayesian optimization minimizes to determine where to sample next.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006606

https://en.wikipedia.org/wiki/Bayesian_optimization

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006606
https://en.wikipedia.org/wiki/Bayesian_optimization
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Closed Loop Model: Iterative Feedback Loop
 Optimal Computing Budget Allocation (OCBA) (Chen and Lee, 2011)

⚫ Given a limited computing power, OCBA finds the best alternative (i.e. parameter 

design) by maximizing the probability of correct selection (PCS). OCBA maximizes 

PCS, given a limited budget.

26

No more 

computations

Need more computations 

for simulation

Approximate Probability of Correct Selection(APCS)

𝑛𝑖
𝑙+1

𝑛𝑗
𝑙+1

=
ሻ𝜎𝑖/( ෤𝜇𝑏 − ෤𝜇𝑖

൯𝜎𝑗/( ෤𝜇𝑏 − ෤𝜇𝑗

2

𝑛𝑏
𝑙+1=𝜎𝑏 σ𝑖∈𝐾,𝑖≠𝑏 𝑛𝑖

𝑙+1/𝜎𝑖
2

OCBA should be the best Ranking and Selection process (Branke et al., 2007)

Notations:

𝐾: a set of designs (alternatives)

𝑏 ∈ 𝐾: the best design

𝑛𝑖: # of simulation allocated for design 𝑖 ∈ 𝐾
𝜇𝑖: the mean of fitness value for design 𝑖
𝑇: the total computing budget

OCBA Model

max
𝑁1,…,𝑁 𝐾

𝑃𝐶𝑆 = 1 − σ𝑖∈𝐾,𝑖≠𝑏 𝑃 ෤𝜇𝑏 > ෤𝜇𝑖

 

s.t. σ𝑖∈𝐾 𝑛𝑖 ≤ 𝑇, 

      𝑛𝑖 ≥ 0, ∀𝑖 ∈ K.
PCS ≥APCS

# of simulation replications for the best design

Let 𝜎𝑖  be the variance for design 𝑖 . PCS can be 

asymptotically maximized when the relationship between 

two non-best design 𝑖 and 𝑗, where 𝑖 ≠ 𝑗 ≠ 𝑏, in the 𝑙th 

iteration.

Chen, C. H. and Loo H. Lee. Stochastic simulation optimization an optimal computing budget allocation. Singapore Hackensack, NJ: World Scientific, 2011.
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Closed Loop Model: Iterative Feedback Loop

 Closed Loop Model (Garcia et al., 2025)

⚫ Forecasts are generated by the prediction model Ψ(θ, xₜ), which produces ŷₜ based 

on parameters θ and features xₜ, and then used as inputs to optimize Gₚ to obtain 

optimal decision 𝑧𝑡
∗

  for each t. Each decision 𝑧𝑡
∗(ŷₜ) is used as an input to optimize Gₐ, 

which is then evaluated against the actual outcome yₜ using an assessment cost. 

Ga is used to update the forecasting parameter θ, creating feedback.

27

Garcia, J. D., Street, A., Homem-de-Mello, T., and Muñoz, F. D., 2025. Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic 

Reserves and Demand Forecasting. Operations Research, vol. 73, no. 1, pp. 22–39, 
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Optimization-Guided Learning: Embedded Method

28

Chen, Y.-W., Li, Y.-E., and Lee, C.-Y. (2025). Virtual-Metrology-Informed Reinforcement Learning for Adaptive Epoxy Quality Control in Semiconductor Packaging Die Bonding. 

Working Paper.

Predictive Analytics
(Data or Environment Simulator) Prescriptive Analytics



Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D.

Optimization-Guided Learning (OGL)

- Genetic Algorithm embedded with Reinforcement Learning (GAeRL)
Lee, C.-Y., Ho, C.-Y., Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with 

reinforcement learning for petrochemical melt-flow-index production scheduling. Applied Soft Computing, 159, 

111630.

- Reinforcement Learning embedded with Robust Optimization (RLeRO)
Lee, C.-Y., Huang, Y.-T., and Chen, P.-J., 2024. Robust-optimization-guiding deep reinforcement learning for 

chemical material production scheduling. Computers and Chemical Engineering, 187, 108745.

29
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Genetic Algorithm embedded with Reinforcement Learning (GAeRL)
 Petrochemical Production Scheduling (化工廠排程特性)

⚫ Objective Functions
─ Minimize tardiness (satisfying due date)

➢ Total Tardiness = σ𝑗∈𝐽 𝑇𝑗 = σ𝑗∈𝐽 max{𝐶𝑗 − 𝐷𝑗 , 0}

─ Minimize # of conversion, transition time, volume of transition product

➢ Transition Prodcuts = σ𝑡∈𝑇(𝑀𝐹𝐼𝑡+1 − 𝑀𝐹𝐼𝑡ሻ2

⚫ Constraints
─ Type Conversion Constraint

─ Specific Group Constraint

─ Melt-flow-index (MFI) Slowly-Rise-and-Fall Constraint

─ Sequence-Dependent Transition Time Constraint

30

Blömer, F., & Günther, H.-O. (1998). Scheduling of a multi-product batch process in the chemical industry. Computers in industry, 36(3), 245-259. 

Blomer, F., & Gunther, H.-O. (2000). LP-based heuristics for scheduling chemical batch processes. International Journal of Production Research, 38(5), 1029-1051. 

T-B

T-C

T-A

MFILow High

Conversion Product

Type



Productivity Optimization Lab, NTU Optimization-Guided Learning Chia-Yen Lee, Ph.D.

Scheduling Methodology

 JSP is among the hardest combinatorial optimization problems.

⚫ NP-hard problem

 Heuristic Method (Priority Rule)

⚫ Shortest processing time (SPT), earliest due date (EDD), etc.

⚫ Pros: easy to understand

⚫ Cons: poor performance for complicated production line

 Meta-Heuristic Algorithm (Tabu, Simulated Annealing, Genetic Algorithm)

⚫ Approximated-optimization approach

⚫ Pros: provide a good solution efficiently

⚫ Cons: cannot guarantee the global optimum

 Reinforcement Learning

⚫ Optimal control approach to take actions in a dynamic environment

⚫ Pros: consider decision over time for dynamic flexible job shop scheduling (DFJSS)

⚫ Cons: convergence issue in a large state space and action space

 Mathematical Programming

⚫ Optimization-based approach formulated by mixed integer programming

⚫ Pros: Guarantee global optimum

⚫ Cons: computational burden for large-scale problem (not suitable for frequent rescheduling)

Local optimum

Short running time

Global optimum

Long running time
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Genetic Algorithm (GA)
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Encoding
Chromosomes represent potential solutions

Initial population
Generate a set of chromosomes

Crossover and mutation
Generate offspring from parents

Fitness computation
Evaluate the chromosome quality

Selection mechanism
Solution comparison and random selection

New population

Best solution

Termination

condition

Yes

No

A B C D E F G H

H E D A B C F G

E F D A B C G H

H A C D E F B G

Parent 1

Parent 2

Crossover point

Offspring 1

Offspring 2

Exchange order CAD

Position

Chromosome B D C E A F

New Chromosome E D B C A F

A B C D E F

Two-point order crossover mechanism

Arbitrary multiple-point shift mutation mechanism

Holland, J. H. (1975). “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor.
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How does RL guide GA?

 Population Similarity
⚫ Population similarity: cluster the population with DBSCAN, and then use the 

Spearman rank correlation coefficient to estimate the correlation within the groups 

and between the groups.

⚫ Correlation: total - within group = between groups

⚫ Population similarity as the correlation within the groups divided by the number of 

the clusters. 

⚫ Guide the mutation and crossover to balance exploration and exploitation.

─ if chromosomes appear similar, the population might be premature: need exploration and 

increase mutation and crossover rates

─ if chromosomes appear dissimilar, the population are not converged: need exploitation 

and decrease mutation and crossover rates.

 Phase of Iterations
⚫ Phase of iteration: the number of iterations that GA did not find the better solutions.

 State Space in RL
⚫ Discretize the two states by assigning quartiles to each value (i.e., the state space 

consists of the 4×4=16 states).
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Clustering
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Reinforcement Learning Elements

 Action
⚫ Rate tuning and mechanism design related to crossover and mutation

⚫ Rate tuning: “fix”, “increase”, and “decrease” by multiplying the original rate by 1, 1.02, and 0.98.

⚫ Combining the crossover and mutation rates to generate 3×3=9 actions.

⚫ Crossover mechanism: “one-point order crossover”, “two-point order crossover”, and “position-

based order crossover” 

⚫ Mutation mechanism: “adjacent two-point change mutation”, “arbitrary multiple-point shift 

mutation”, and “shift change mutation”. 

⚫ Combining the crossover and mutation mechanisms to generate 3×3=9 actions
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REF

S1

S2
S3

Min Transition Products
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s Reward
⚫ Two-objective reward: minimization of (1) transition products and (2) 

total tardiness.

⚫ Hypervolume as the volume surrounded by the solutions and a 

reference point (REF) (i.e., the poorest solution having the highest limit 

of each objective).

⚫ Goal: maximize the hypervolume: If the present hypervolume indicator 

is better than last time, the reward is with +1; otherwise, if it is worse 

than last time, the reward is with -1.
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GA embedded with RL (GAeRL)
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Encoding
Chromosomes represent potential solutions

Initial population
Generate a set of chromosomes

Crossover and mutation
Generate offspring from parents

Combine parent and offspring
Elitism strategy

Decoding and repair
Generate feasible solutions

New population

Best solution

Termination

condition

Yes

No

Fitness evaluation
Non-dominated sorting

Selection mechanism
Front rank and crowding distance

Model-based RL

Define the State, 

Action, and 

Reward in the 

genetic algorithm

Repeat NSGA-II 

100 times with 

random actions

Estimate the 

transition matrix 

and reward matrix

MDP

Transition matrix 

and 

Reward matrix

Optimal policy

Tune the parameters 

by optimal policy 

(crossover rate and 

mutation rate)

Select the optimal 

mechanism of 

crossover and 

mutation

Calculate the state 

including population 

similarity and phase of 

iterations

Optimal policy 

(get the optimal 

policy from 

model-based RL)

NSGA-II with Optimal Policy
Pseudocode of GAeRL

Begin

Model-based RL
While not maximal number of iterations

Repeat NSGA-II with random action

Collect data (state, action, reward)

End

Estimate the transition matrix and reward matrix

MDP (value iteration)

Obtain optimal policy (adjustment of mechanism or rate of crossover and mutation)

NSGAw/OP
Input: Optimal policy and initial parameters

Generate a population from EEH or generate a population randomly

While not termination condition

Generate offspring by crossover and mutation

Combine offspring and parent population

For each chromosome from offspring and parents

Compute the fitness function

Non-dominated sorting

Select chromosomes based on non-domination front rank and crowding distance

Build new population

Compute the state according to new population

Choose optimal policy according to the state

Tune rate or select mechanism of mutation and crossover

End

Decode to the petrochemical production schedule

End

Lee, C.-Y., Ho, C.-Y., Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with reinforcement learning for petrochemical melt-flow-index production 

scheduling. Applied Soft Computing, 159, 111630.
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Empirical Study of Petrochemical Scheduling 

 Petrochemical Factory

⚫ Leading manufacturer & supplier of polypropylene in Taiwan 

─ Product portfolio consists primarily of SBS, SIS, SEBS, and SEP, including compound materials 

for footwear, modified asphalt, waterproofing membranes, adhesives, and plastics modification.

⚫ Data Source: manufacturing execution system (MES)

⚫ Time: First half of 2019

⚫ Data Size

─ 38 orders including 199 batches, 4 types of catalyst, 4 types of donors, and 12 precedence 

groups.

─ Transform the data for proprietary information protection without loss of generality.

⚫ Results

─ Reduce transition products in the petrochemical production line by more than 10% through 

minimizing the change of the Material Flow Index (MFI).

─ It ensures the fulfillment of customer due dates.
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Empirical Study of Petrochemical Scheduling 

 State Space

⚫ 16 states (combination of 4 levels of similarity and 4 levels in phase due to quantile discretization). 

 Action Space

⚫ 9 actions (combination of 3 levels in crossover and 3 levels in mutation) with respect to rate tuning 

and mechanism selection, respectively. 

 Initial Parameters Settings

⚫ Population size 20, crossover rate 0.8, and mutation rate 0.2. 
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Action ID Crossover rate Mutation rate
R1 Decrease Decrease
R2 Fix Decrease
R3 Increase Decrease
R4 Decrease Fix
R5

(baseline)
Fix Fix

R6 Increase Fix
R7 Decrease Increase
R8 Fix Increase
R9 Increase Increase

Action ID Crossover Mutation
M1 One-point order crossover Adjacent two-point change
M2 Two-point order crossover Adjacent two-point change

M3
Position-based order 

crossover
Adjacent two-point change

M4 One-point order crossover Arbitrary multiple-point shift
M5

(baseline)
Two-point order crossover Arbitrary multiple-point shift

M6
Position-based order 

crossover
Arbitrary multiple-point shift

M7 One-point order crossover Shift change mutation
M8 Two-point order crossover Shift change mutation

M9
Position-based order 

crossover
Shift change mutation
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Empirical Study of Petrochemical Scheduling 
 Performance Comparison (with 30 replications)

⚫ Six Algorithms: (1) Engineering Experience Heuristic (EEH), (2) NSGA-II, (3) NSGA-II with random 

action (NSGAw/RA) for rate tuning of crossover and mutation, (4) NSGA-II with random action 

(NSGAw/RA) for mechanism selection of crossover and mutation, (5) NSGAeRL for rate tuning, (6) 

NSGAeRL for mechanism selection. (Note: NSGAw/RA has the same set of actions with NSGAeRL, but with equal 

probability of selecting actions rather than the optimal policy.)
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Mean
(Standard 
Deviation)

EEH NSGA-II
NSGAwRA

for Rate 
Tuning

NSGAwRA
for Mechanism 

Selection

NSGAeRL
for Rate Tuning

NSGAeRL
for Mechanism Selection

Transition 
Products

5993
(0)

7247
(950)

7603
(1283)

6974
(952)

6791
(940)

6517
(841)

Total 
Tardiness

672
(0)

316
(98)

292
(78)

260
(44)

256
(70)

234
(38)

# of 
Iterations

1
(0)

1287
(490)

872
(463)

1597
(378)

1418
(489)

1767
(292)

CPU Time
(second)

3
(0)

1122
(448)

924
(442)

1474
(337)

1466
(483)

1722
(280)

State 
(optimal policy)

Similarity-1 Similarity-2 Similarity-3 Similarity-4

Phase-1 R1 R4 R1 R4

Phase-2 R8 R8 R4 R9

Phase-3 R3 R6 R3 R1

Phase-4 R5 R4 R8 R4

State
(optimal policy)

Similarity-1 Similarity-2 Similarity-3 Similarity-4

Phase-1 M7 M6 M1 M6

Phase-2 M4 M8 M4 M2

Phase-3 M1 M4 M6 M8

Phase-4 M4 M5 M8 M8
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Optimization-Guided Learning (OGL)

- Genetic Algorithm embedded with Reinforcement Learning (GAeRL)
Lee, C.-Y., Ho, C.-Y., Hung, Y.-H., and Deng, Y.-W., 2024. Multi-objective genetic algorithm embedded with 

reinforcement learning for petrochemical melt-flow-index production scheduling. Applied Soft Computing, 159, 

111630.

- Reinforcement Learning embedded with Robust Optimization (RLeRO)
Lee, C.-Y., Huang, Y.-T., and Chen, P.-J., 2024. Robust-optimization-guiding deep reinforcement learning for 

chemical material production scheduling. Computers and Chemical Engineering, 187, 108745.
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Reinforcement Learning embedded with Robust Optimization (RLeRO)

 Petrochemical Production Scheduling

⚫ Uncertainty

─ Demand fluctuation and yield rate

─ Polyhedral uncertainty sets encode a budget of uncertainty into cardinality constraints. 

⚫ Objective function

─ To maximize the gross profit of the chemical production schedule

─ 𝑀𝑎𝑥 σ𝑖∈𝐼 σ𝑝∈𝑃 𝑉𝑖𝐴∗
𝑖𝑥𝑖𝑝 − σ𝑖∈𝐼 σ𝑝∈𝑃 𝐶𝑖

𝑆𝑠𝑖𝑝 − σ𝑖∈𝐼 𝐶𝑖
𝐿𝑙𝑖𝑝 −  σ𝑖∈𝐼 σ𝑗∈𝐼,𝑗≠𝑖 σ𝑝∈𝑃 𝐶𝑖𝑗

𝑇 𝑧𝑖𝑗𝑝 

⚫ Constraints
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Sales profit Inventory cost Stockout cost Transition cost

◼ State initialization for subproblems

𝑠𝑖𝑃0
= 𝑆𝑖

𝐼 , ∀𝑖 ∈ 𝐼; 𝑥𝑖𝑓 = 𝑋𝑖𝑗 , ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 ∪ {𝑃0} 

◼ Mass balance constraint

𝑠𝑖𝑝 = 𝑠𝑖 𝑝−1 + 𝐴𝑖
∗𝑥𝑖𝑝 − 𝐷𝑖𝑝

∗ + 𝑙𝑖𝑝, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 

◼ Production transition identification

σ𝑖∈𝐼 𝑧𝑖𝑗𝑝 = 𝑥𝑗𝑝 , ∀𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 

σ𝑗∈𝐼 𝑧𝑖𝑗𝑝 = 𝑥𝑖 𝑝−1 , ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃  

◼ Machine occupancy constraint

σ𝑖∈𝐼 𝑥𝑖𝑝 = 1, ∀𝑝 ∈ 𝑃  

◼ Variable domains

𝑥𝑖𝑝 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃0} 

𝑧𝑖𝑗𝑝 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑝 ∈ 𝑃 

𝑠𝑖𝑝 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 ∪ {𝑃0} 

𝑙𝑖𝑝 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 
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Reinforcement Learning embedded with Robust Optimization (RLeRO)
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0
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 Action

⚫ Network output discrete probability distribution 𝐴

⚫ Action 𝑎 is sampled from 𝐴, corresponding to 𝑥𝑖𝑝.

 Episode

⚫ Finish a complete scheduling window and rolling to the next.

 Reward

⚫ The change in objective value after a particular action

 State encoding

 Methods

⚫ Perfect information deterministic optimization (PIDO)

⚫ Expected value deterministic optimization (EVDO)

⚫ Robust optimization (RO)

⚫ Advantage-Actor-Critic (A2C)

⚫ A2C + EVDO guiding

⚫ A2C + RO guiding

Lee, C.-Y., Huang, Y.-T., and Chen, P.-J., 

2024. Robust-optimization-guiding deep 

reinforcement learning for chemical material 

production scheduling. Computers and 

Chemical Engineering, 187, 108745.
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Reinforcement Learning embedded with Robust Optimization (RLeRO)

 Sensitivity Analysis

⚫ Optimization-based models

⚫ RL-based models

42

 Solution Value Analysis

⚫ Expected value of perfect information (EVPI)

─ “How much a decision-maker would be willing to pay 

for perfect information when using the model”

─ subtract the PIDO value from the target model’s

─ The robust models are less needed of perfect infor.

⚫ Price of robustness 

─ Distance of objective 

between the baseline 

(EVDO) and robust solution

─ “How much it cost to apply 

robust solutions”

─ Adopt conservative policies 

in high demand fluctuation.
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Takeaway
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Predictive 
Analytics
(Environ.)

Prescriptive 
Analytics
(Human)

Predict-then-Optimize

I-Ching teaches people how to 

address the change

Demand 

& Price 

Forecast

Resource 

Portfolio 

Optimization

1. Error/MSE focus

2. Data-driven

3. Causality

4. Find the change in unchanging env.

    - 在不變中找變 (infor. content)

1. Objective/KPI focus

2. Decision-oriented

3. Resource Allocation

4. Find the unchange in changing env.

    - 在變中找不變 (robustness)
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Closed Loop Model

Optimization-Guided Learning

Reflection

Train/Guide

Tang, L. and Meng, Y., 2021. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 8, 2, 157-171.
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Takeaway

 Prediction is the Process; Decision is the Purpose.

 From Predictive to Prescriptive Analytics

 Optimization-Guided Learning (OGL)

⚫ Find the “unchanged” power in “changing” env.

⚫ Make the learning system more “stable”.
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https://www.youtube.com/watch?v=oBVIn2PFTYM

Predictive
(直覺)

Prescriptive
(性格)

From Predictive to 

Prescriptive Analytics

Optimization-Guided 

Learning

Light speed in vacuum (真空光速): 299,792,458 m/s

Planck constant (普朗克常數): 6.62607015× 10−34 J∙s

Electron mass (電子質量): 9.10938291× 10−31 kg

Avogadro constant (亞佛加厥常數): 6.02214076× 1023 mol−1

Boltzmann constant (波茲曼常數): 1.38064852× 10−23 J/K

Gravitational constant (重力常數): 6.67384× 10−11 m3/(kg ∙ s2)

We can observe them, but cannot change them.

我們只能觀察到，但不能改變他們
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